
ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 62 Vol 1 Issue 2 FEB 2014/103

TWIN PROTECTION TO AVOID INTRUSIONS IN MULTITIER DYNAMIC WEB

APPLICATIONS

1
Sandeep Shinde,

2
Prashant Kumbharkar

Department of Computer Engineering, Siddhant College of engineering, Sudumbare, Pune
1
smshinde09@gmail.com,

2
pbk.rscoe@gmail.com

Abstract: Today most of the web applications used three tier web applications. With the increased new

technologies, on the other side web site hacking, intrusion also becomes big issues in developed environments. For

this problem we proposed Twin Protection to multitier dynamic web application. This system used to detect attacks

in multi-tiered web services. This approach can create routine copies of lonely user sessions that contain both the

HTTP and back end network communications. Websites that do not permit gratified alteration from user; and there is

a direct causal connection between the requests acknowledged by the front-end web server and those generated for

the database back end. The user doesn‟t know information of the source code or the application logic of web

services deployed on the web server. Virtualization is used to detach objects and enhance security routine.

Insubstantial containers can have large routine advantages over full virtualization.

Keyword: SQL Injection, IDS, XSS, Anomaly Detection, Dynamic Web, Session Hijacking, J2EE.

1. INTRODUCTION

In real world dynamic web applications providing

various services to users, unluckily, web applications

have been contain many security susceptibilities, due to

a grouping of unsafe improvement tools and a historic

lack of security awareness among programmers. In

adding, the risks are magnified when vulnerable

software is deployed in the context of the Web, since

applications are typically widely accessible and often

have access to sensitive contents [1]. These factors have

naturally resulted in web-related vulnerabilities

receiving substantial attention. The occurrence of data

cracks or online crime and other crimes resulting from

the exploitation of web application vulnerabilities

continues to rise. It is essential to protect applications

and systems connected to the Internet against attacks.

Due to their universal use for personal or corporate

data, web services always of attacks. These attacks have

recently become more mixed, as attention has shifted

from attacking the front end to exploiting liabilities of

the web applications in order to corrupt the back end

database system. An excess of Intrusion Detection

Systems (IDS) currently examine network packets

individually within both the webserver and the DBMS

[2]. Though, there is little work being achieved on

multitier intrusion detection systems that generate

models of network behavior of both web and database

network connections. In such multitier, the database

server is often protected firewall while the webservers

are remotely accessible over the web. Unfortunately,

yet they are threatened from direct remote attacks, and

DBMS systems are vulnerable to attacks that use web

requests as a means to exploit the back end.

For illustration, observed that the queries will vary

based on the value of the constraints approved in the

HTTP requirements and the previous state. At times,

the same application original functionality can be

triggered by many web pages. So, the ensuing mapping

between web and database can range from one to many,

contingent on the value of the constraints passed in the

web request.

2. RELATED WORK

2.1 Toward Programmed Detection:

Web applications are the common path to make

services and data accessible on the web. Unluckily,

with the increase in the number and complication of

these requests, it has also been an increase in the

number and difficulty of exposure. Existing techniques

to identify security problems in webapplications have

mostly focused on input validation faults, such as XSS

or SQL injection attack [3]; much less attention

dedicated to application logic attacks. Application logic

vulnerability is a crucial class of faults that are the

result of faulty application logic. These vulnerabilities

are definite to the functionality of specific web

mailto:smshinde09@gmail.com
mailto:pbk.rscoe@gmail.com

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 63 Vol 1 Issue 2 FEB 2014/103

technology.

2.2 Client-Site XSS Filters:

Cross Site Scripting faults have now exceeded buffer as

the world most common reported security vulnerability.

Recent, browser developers and researchers require

tried developing client side sifts to moderate these

attacks. Our studies focus planned best existing filters

and find them to be either inadmissibly slow or easily

sidestepped. Some of these filters could introduce

vulnerabilities into sites that were error free. The

proposed work is new filter design that achieves both

high presentation and high correctness by blocking

scripts after HTML parsing but earlier destroying.

Compared to existing approaches, our approach is

faster, defends against more vulnerability.

A number of client-side XSS filters attempt to

moderate XSS vulnerabilities by preventing the

attacker's script from leaking complex data to the

attacker's servers [4]. Normally, filters monitor the

movement of data within the JavaScript environment

and aim to block the attacker from exfiltration that

information to server systems. The real technical

difficulty by means of preventing attacks is that web

sites frequently export data to third party web sites. For

instance, web site that holds a hyperlink to another site

drips some amount of data to that site, modern web sites

frequently have gorgeous connections with other web

sites (POST Message, OAuth Protocol) [5]. To

differentiate between benign, malicious information

leaks, the XSS filters regularly employ refined

investigation techniques, including fault tracking

analysis, by means of the associated false negatives and

false positives.

2.3 Effective Anomaly Detection:

Learning based anomaly detection has confirmed to be

an effective black box technique for detecting attacks.

However, the effectiveness of this technique

importantly rest on upon both the quality and the

completeness of the training data. In most cases, the

traffic to the system protected by an anomaly detector is

not evenly distributed. Hence, some works (e.g.,

payments, authentication, and publishing) potency not

is trained enough to an anomaly detection scheme in a

sensible time intervals. This type of particular

importance in real settings, wherever anomaly detection

systems are organized with manual configuration, they

are expected to automatically learn the normal behavior

of a system to detect or block attacks. In this work, first

demonstrate that the structures utilized learning based

detector can be semantically assembled, and that

features of the same group tend to persuade like

models. Our method runs our tests on a real world data

set casing over HTTP requests to more than 1000 web

application mechanisms. The outcome shows that by

using the proposed system, it is possible to achieve

actual detection even with occasional training data.

2.4 Intrusion Detection System:

A network Intrusion Detection System can be

confidential into two types, anomaly detection and

hacking detection. Anomaly is first requires the IDS to

define and describe the correct and satisfactory static

form and dynamic conduct of the scheme, which can be

used for detecting abnormal changes or uncommon

concerts. The boundary between suitable and

anomalous forms of stored code and data is exactly

definable.

IDS, also uses time-based material to detect

intrusions however, it does not associate actions on a

time basis, which runs the risk of incorrectly seeing

liberated but simultaneous actions as connected events

[6]. Twin protection doesn‟t have such a restriction as it

uses the container ID for each session to causally map

the associated actions.

2.5 Easy-to-Use Desktop Application:

Desktop computers are often cooperated by the

communication of untrusted software. To address this

problem, this paper presents the technique called

Apiary, a system that plainly contains application faults

while retaining the usage metaphors of an out dated

desktop situation. Apiary completes with three key

contrivances [7]. It separates submissions in web

containers that incorporate in a controlled way at the

display and file system. It introduces container that are

quickly instantiated for single request accomplishment,

to avoid any activity that ensues from continuing and to

guard user privacy. It declares the Layered File System

to sort instantiating containers fast and universe

efficient [8], and to make dealing many containers no

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 64 Vol 1 Issue 2 FEB 2014/103

more composite than a single out dated desktop.

3. SYSTEM ARCHITECTURE

In Software development, multitier architecture often

mentioned to as N tiered architecture is a client server

architecture in which the demonstration, the application

dispensation, the data management are logically

separate processes. Fig.1 shows our complete

architecture of proposed system. For example, an

application that practices middleware to service data

requests between a user and a database employs

multitier architecture. The most common use of multi-

tier architecture is the MVC architecture.

For example, a change of OS in the presentation tier

would only affect the user interface code. Normally, the

user interface turns on a desktop PC or workstation and

uses a standard GUI, functional logic may contain of

one or more separate components successively on a

workplace or application servers and RDBMS on a

database server or workstation that clutches the

computer storage logic. The intermediate tier strength

be multitier itself.

3.1 Multitier Web Applications:

N-tier application architecture provides a model for

developers to create a flexible and reusable presentation

[9]. By breaking up an application into layers (tiers),

developers simply have to change or add a detailed

layer, relatively than require rewriting the complete

submission over. There must be an exhibition tier, a

commercial or data admission tier.

The concepts of layer and tier are often used

interchangeably. Yet, one fairly common point of view

is that there is indeed a difference and that a cover is a

rational structuring utilization for the landscapes that

make up the software clarification, although a tier is a

corporal constructing appliance for the system

substructure.

Three-tier is a client–server architecture in which

the user interface, functional process logic ("business

rules"), data access and maintained as self-regulating

modules, most normally on separate platforms [9].

Apart from the usual advantages of linked software

with well-defined boundaries, the three-tier design is

planned to permit any of the three tiers to be promoted

or substituted autonomously in response to changes in

requirements or technology.

3.2 Presentation tier:

This is the topmost level of the application. The

presentation tier displays material related to such

services as browsing merchandise, purchasing, and

shopping cart insides.

It communicates with other tiers by output results

to the client tier and all other tiers in the system.

3.3 Application tier:

The logic tier is dragged out since, the presentation tier

has own layer; it controls an application functionality

by comprehensive handling.

3.4 Data tier:

This tier contains of database servers. Primary task is to

storage and retrieval. This layer keeps data neutral and

independent from application servers or business logic.

Providing data on its own tier also recovers scalability

and performance.

4. SYSTEM MODULES

We primarily set up our threat model to include our

expectations and the types of occurrences we are

aiming to protect alongside. We take on that both the

web and the database servers are susceptible. Attacks

are network allowed and come from the clients; they

launch application layer attacks to cooperation the

webservers they are involving to. The attackers can

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 65 Vol 1 Issue 2 FEB 2014/103

bypass the webserver to straight attack the database

server [10]. We assume that the attacks can neither be

detected nor prevented by the current webserver IDS,

that attacker may take over the web server after the

attack, and that subsequently they can obtain full

control of the webserver to launch subsequent attacks.

For example, the attackers could modify the application

logic of the web applications, snoop or hijack other

users‟ web requests and intercept the database queries

to snip sensitive data elsewhere their privileges.

4.1 Session Monitoring:

In our prototype, we chose to assign each user session

into a different container; however, this was a design

decision. For instance, we can assign a new session per

each new IP address of the client [11]. In our

enactment, sessions were salvaged based on events or

when sessions time out. We were able to use the same

session tracking mechanisms as implemented by the

Apache server because lightweight virtualization

containers do not impose high memory and storing

overhead. We could preserve a large number of parallel

consecutively instances similar to the threads that the

server would preserve in the scenario without session

containers. If session time out, the instance was

concluded along with its container. In our prototype

system, we used a one minute timeout due to resource

restraints of our test server.

4.2 Analysis of Dataset:

Based on the web server and application logic, diverse

inputs would cause different database queries. For

instance, to keep a remark to a blog critique, the

webserver would first query the database to see the

existing comments.

If the user comment differs from previous remarks,

then the webserver would mechanically generate a set

of new queries to insert the new post into the database.

Or else, webserver will reject the input in order to

prevent duplicated comments from being posted (i.e.,

no corresponding SQL query would be issued). In such

cases, even assigning the same parameter values would

cause different set of queries, depending on the

previous state of the website.

Likewise, this nondeterministic mapping case (i.e.,

one-to-many mapping) happens even after we

normalize all parameter values to extract the structures

of the web requests and queries. Since the mapping can

appear differently in different cases, it becomes difficult

to identify all of the one-to-many mapping patterns for

each web request. Moreover, when different jobs

occasionally overlap at their possible query set, it

becomes even tougher for us to abstract the one-to-

many mapping for each operation by comparing

matched requests and queries across the sessions.

Since the mapping can appear differently in

different cases, it becomes difficult to identify all of the

one-to-many mapping patterns for each web request

[12]. Moreover, when altered operations occasionally

overlap at their possible query, it develops even harder

for us to extract the mapping for each operation by

comparing matched requests and queries across the

sessions. Since the algorithm for extracting mapping

patterns in static pages no longer worked for the

dynamic web, proposed work also created additional

preparation technique to build the classical. First, we

strained to classify all of the atomic operations on the

webpages. All of the operations that appear within one

session are permutations of these operations.

4.3 Attack Detection:

The attacker visits the website as a normal user aiming

to concession the webserver process or exploit

vulnerabilities to bypass authentication. At that point,

the attacker issues a set of privileged DB queries to

retrieve sensitive data [13]. We capture all the session

information and process both legitimate web requests

and database queries in the session, here are no

mappings amongst them. The twin protection separates

the traffic by meetings. If it is a user session, then the

requests and queries should all belong to normal users

and match physically. By means of the mapping

prototypical that we created during the phase, our

scheme can capture the unmatched suitcases. And we

established the mapping between the HTTP requests

and database query, visibly defining which requests

should trigger which queries. For an SQL injection

attack to be positive, it must change the structure of the

query, which our method can willingly perceive. First

of all, permitting to our plotting model, Database

queries will not have any matching web requests during

this type of attack. On the other hand, as this traffic will

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 66 Vol 1 Issue 2 FEB 2014/103

not go through any containers, it will be halted as it

completes to differ from the genuine traffic that goes

through the ampules. The twin protection is intended to

mitigate DOS attacks. These attacks can occur in the

server architecture without the DBMS.

Attack Scenarios: - Our system is effective at

capturing the following types of attacks:

 Privilege Escalation Attack

 Hijack Future Session Attack

 Injection Attack

 Direct DB Attack

4.4 Privilege Escalation Attack:

<% InetAddress is=InetAddress.getLocalHost ();

session.setAttribute ("ip", is);

ip=session1.getAttribute("ipadd").toString();

session1.setAttribute("ipaddr",ip);

java.util.Random rnd=new java.util.Random();

java.util.Random rnd1=new

java.util.Random();

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8">

<s: iterator value="list" status="username">

<s: property value="%{ username}"/>

<s: property value="%{ password}"/>

<s: a action="ddos">View DOS Attack>

Now suppose that an attacker logs into the web server

as a normal user, upgrades his/her privileges, and

triggers admin queries so as to obtain an administrator‟s

data. This attack can never be detected by either the

web server IDS or the database IDS since legitimate

requirements and queries. Our approach, can notice this

type of occurrence since the DB query.

4.5 Hijack Future Session Attack:

This class of occurrences is generally expected at the

web server side. An attacker usually takes over the

webserver and therefore hijacks all successive

legitimate user sessions to launch attacks. For instance,

by hijacking other user sessions, the attacker can

eavesdrop, send spoofed replies, and/or drop user

requests.

public pojoclass(String type,String time) {

this.type = type;

this.time=time;

}

public void setTime(String time) {

this.time = time;

}

A session-hijacking attack can be further categorized as

a Spoofing an Exfiltration Attack, a DOS and Packet

Drop attack, or a Replay attack. According to the

mapping model, the web request should invoke some

database queries (e.g., a Deterministic Mapping then

the abnormal situation can be detected. However,

neither a predictable webserver IDS nor a record IDS

can detect such an attack by itself. Fortunately, the

isolation property of our container based webserver

architecture can also prevent this type of attack. As

each user‟s web requests are insulated into a separate

container, an attacker can never halt into other users‟

session.

4.6 Injection Attack:

Attacks such as SQL injection do not require

compromising the webserver. Attackers can use

existing vulnerabilities in the webserver logic to inject

the data or string content that contains the exploits and

then use the webserver to relay these exploits to attack

the back end database. Our approach provides two tier

detection, even if the activities are recognized by the

webserver, the transmitted insides to the DB server

would not be able to take on the anticipated structure

for the given webserver application.

/*Table structure for table `attack`

*/ DROP TABLE IF EXISTS

`attack`; CREATE TABLE `attack` (

`type` varchar(20) default NULL,

`time` varchar(50) default NULL)

ENGINE=InnoDB DEFAULT

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 67 Vol 1 Issue 2 FEB 2014/103

CHARSET=latin1;

/*Data for the table `attack` */

For instance, since the SQL injection attack

modifications the structure of the SQL queries, even if

the injected data were to go concluded the webserver

side, it would generate SQL queries in a different

composition that could be perceived as a deviation

from the SQL query structure that would typically

monitor such a web request.

4.7 Direct DB Attack:

It is likely for an attacker to bypass the webserver or

firewalls and join directly to the database. An attacker

could also have already taken over the webserver and

be acquiescing such inquiries from the webserver

without transfer requests. Deprived of matched web

requests for these queries, a webserver IDS could

perceive neither. Furthermore, if these DB queries were

inside the set of allowed queries, then the catalogue IDS

it would not distinguish it either.

Though, this type of occurrence can be fixed with

our method since we are not matched any web requests

with these database queries.

/* SQLyog Ultimate v9.02 MySQL-5.0.41-

community-nt:Database- viewdb

--

*/

/*!40101 SET NAMES utf8 */;

/*!40101 SET SQL_MODE=''*/;

CREATE DATABASE /*!32312 IF NOT

EXISTS*/`viewdb` /*!40100 DEFAULT CHARACTER

SET latin1 */;

USE `viewdb`;

/*Table structure for table `login` */

DROP TABLE IF EXISTS `login`;

CREATE TABLE `login` (

`sno` int(10) NOT NULL auto_increment,

`username` varchar(150) default NULL,

`password` varchar(150) default NULL,

PRIMARY KEY (`sno`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

/*Data for the table `login` */

5. RESULT

In our proposed work we applied twin protection for

web application. Proposed work has been implemented

in by J2EE technology with Apache Tomcat web server

and back end as a MySQL Server. Our implementation

tested and works efficiently with various attacks. It

prevents and fights against the SQL injection attack and

Session attack.

6. CONCLUSION

We existing an intrusion detection system that figures

models of normal performance for multitier web claims.

Container based IDS with multiple input streams to

produce alerts. We have shown that such correlation of

input torrents offers a better classification of the system

for anomaly detection.

REFERENCES

[1] D. Bates, A. Barth, “Regular Expressions Considered

Harmful in Client-Side XSS Filters,” Proc. 19th Int‟l

Conf. World Wide Web, 2010.

[2] M. Christodorescu, S. Jha, „Static Analysis of

Executables to Detect Malicious Patterns,‟ Conf.

USENIX Security Symp. 03.

 [3] M. Cova, D. Balzarotti, V. Felmetsger, “Swaddler: An

Approach for the Anomaly-Based Detection of State

Violations in Web Applications,” Proc. Recent

Advances in Intrusion Detection (RAID ‟07).

[4] H. Debar, M. Dacier, A. Wespi, “Towards a

Taxonomy of Intrusion-Detection Systems,” Computer

Networks, vol. 31, no. 9, 99.

[5] V. Felmetsger, L. Cavedon, C. Kruegel, “Toward

Automated Detection of Logic Vulnerabilities in Web

Applications” USENIX Security Symp.,‟10.

[6] Y. Hu, B. Panda, “A Data Mining Approach for

Database Intrusion Detection,” Proc. Applied

Computing (SAC), H. Haddad, A. Omicini, R.L.

Wainwright, and L.M. Liebrock,04. \

[7] Y. Huang, A. Stavrou, A.K. Ghosh, S. Jajodia,

„Efficiently Tracking Application Interactions Using

Lightweight Virtualization,‟ First ACM Workshop

Virtual Machine Security,08.

[8] H.-A. Kim and B. Karp, “Autograph: Toward

Automated Distributed Worm Signature Detection,”

Proc. USENIX Security Symp., 2004.

[9] C. Kruegel, G. Vigna, “Anomaly Detection of Web-

Based Attacks,” 10th Conf. Computer and Comm.

Security (CCS ‟03), 2003.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 68 Vol 1 Issue 2 FEB 2014/103

[10] S.Y. Lee, W.L. Low, P.Y. Wong, “Learning

Fingerprints for a Database Intrusion Detection System,

Research in Computer Security, 2002.

[11] Liang, Sekar, “Fast and Automated Generation of

Attack Signatures: A Basis for Building Self-

Protecting Servers,” SIGSAC: ACM Conf. Computer

and Comm, 2005.

[12] J. Newsome, B. Karp, and D.X. Song, “Polygraph:

Automatically Generating Signatures for Polymorphic

Worms,” Proc. IEEE Symp. Security and Privacy,

2005.

[13] B. Parno, J.M. McCune, D. Wendlandt, D.G. Andersen,

A. Perrig, „CLAMP: Practical Prevention of Large-

Scale Data Leaks‟ IEEE Symp. Security and Privacy -

09.

[14] A. Schulman, “Top 10 Database Attacks,”

http://www.bcs.org/server.php?show=ConWebDoc.8

852 - 2011.

[15] R. Sekar, „An Efficient Black-Box Technique for

Defeating Web Application Attacks,” Network and

Distributed System - 2009.

[16] A. Seleznyov,S. Puuronen, “Anomaly Intrusion

Detection Systems- Handling Temporal Relations

between Events,” Int‟l Recent Advances in Intrusion

Detection,1999.

[17] Y. Shin, L. Williams, T. Xie, “SQLUnitgen: Test Case

Generation for SQL Injection Detection,” Dept. of

Computer Science, 2006.

[18] A. Srivastava, S. Sural, A.K. Majumdar, „Database

Intrusion Detection Using Weighted Sequence Mining,”

Computers, no. 4, pp. 8-17, 2006.

