
ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 100 Vol 1 Issue 2 FEB 2014/109

A SURVEY ON SOFTWARE TESTING BASED ON COST REDUCTION METHODS

1
J.SRIVIDHYA,

2
DR. K. ALAGARS AMY

1
 Research Scholar, Department of Computer Science, Karpagam University
2
 Professors, Department of Computer Science, Madurai Kamaraj University

1
jsrividhya.ku2011@gmail.com

Abstract: Nowadays testing is an important role of any software development process. Testing process is having

large cost. The reduction of cost is main problem during software testing process. In basic testing is executing a

system with a specific end goal to recognize any crevices, lapses or missing prerequisites in spite of the real desire

or necessities. In this paper is includes survey of the basic concepts of software testing, different levels of testing in

software development process for better understand. Finally we try to give some suggestions for efficient way

reduces the software testing cost.

Keywords: Software testing, STG, OTC, STM, Cost reduction.

1. INTRODUCTION

Testing is the procedure of assessing a system or its

component(s) with the plan to find that whether it

fulfills the specified prerequisites or not. This

movement brings about the genuine, expected and

distinction between their outcomes. In basic testing is

executing a system so as to distinguish any holes,

blunders or missing prerequisites in spite of the real

desire or necessities. Software testing is an integral part

of the software development life cycle that span over all

the development phases [1]. One of the main challenges

in software testing is deploying and maintaining a real–

world test platform at the outset of a project. As a rule,

emulating experts are included in testing of a system

inside their individual limits : Software Developer,

Software Tester, Project Lead/Manager and End

User.An early begins to testing decreases the cost, time

to revamp and failure free software that is conveyed to

the customer. However in Software Development Life

Cycle (SDLC) testing might be begum from the

Requirements Gathering stage and keeps ticking work

till the development of the software. However it

likewise realize on upon the development methods

is,utilized. For instance in waterfall modelformal testing

is directed in the testing stage, yet in incremental model

, testing is performed at the end of each augmentation

cycle and at the end of entireProvision is tried. Testing

is carried out in diverse structuresat each period of

SDLC like throughout requirement gathering stage, the

investigation and checks of requirements are likewise

vied as testing. Reviewing the configuration in the

design stage with goal to enhance the design is

additionally acknowledged as testing. Testing

performed by a designer on culmination of the code is

additionally sorted as Unit sort of testing. Following are

the viewpoints which ought to be recognized to stop the

testing: Testing Deadlines, Completion of experiment

execution, Completion of Functional and code scope to

a certain point, Bug rate falls beneath a certain level and

no high necessity bugs are distinguished and

Management choice. The section II of this paper

presents research background of cost reduction methods

of software testing. Section III of this paper we are give

some suggestions for improve testing system with cost

reduction methods. Section IV is conclusion of this

paper.

1.1 Testing types

Manual testing.

This sort incorporates the testing of the software

physically i.e. without utilizing any automated tools or

any script. In this sort the analyzer assumes control over

the part of an end client and tests the software to

distinguish any unexpected conduct or bug. There are

distinctive stages for manual testing like unit testing,

Integration is testing, System testing and User

Acceptance testing.

Automation testing.

Automation testing which is otherwise called Test

Automation is the point at which the analyzer composes

scripts and utilizes alternate software to test the

software. This procedure includes automation of a

manual methodology. Automation Testing is utilized to

re-run the test situations that were performed physically,

rapidly and more than once.

mailto:jsrividhya.ku2011@gmail.com

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 101 Vol 1 Issue 2 FEB 2014/109

Black Box testing.

The procedure of testing without having any

information of the inside workings of the requisition is

Black Box testing. The analyzer is absent to the system

construction modeling and does not have entry to the

source code. Typically, when performing a black box

test, an analyzer will associate with the system's client

interface by giving inputs and inspecting yields without

knowing how and where the inputsare worked upon.

Table 1: Black Box testing

Advantages Disadvantages

Well suited and efficient

for large code segments.

Restricted Coverage

since just a selected

number of test situations

are really performed.

Code Access not

required.

Ineffective testing,

because of the way that

the analyzer just has

constrained knowledge

about an application.

Unambiguously divides

client's point of view

from the developer's

viewpoint through

obviously characterized

parts.

Blind Coverage, since

the analyzer can't target

particular code portions

or mistake inclined

ranges.

Expansive amounts of

tolerably skilled

analyzers can test the

application with no

learning of execution,

programming dialect or

working systems.

The test cases are

difficult to design.

 White Box Testing.

 White box testing is the definite examination of inside

rationale and structure of the code. White box testing is

likewise called glass testing or open box testing. so as to

perform white box testing on an application, the

analyzer needs to have information of the interior

working of the code. the analyzer needs to observe

inside the source code and discover which unit/lump of

the code is behaving improperly.

Table 2: White Box testing

Advantages Disadvantages

As the analyzer has

knowledge of the source

code, it gets simple to

figure out which sort of

information can help in

testing the application

Because of the fact that

a skilled analyzer is

required to perform

white box testing, the

costs are increased.

viably.

It helps in optimizing

the code.

Sometimes it is

impossible to look into

every nook and corner

to find out hidden errors

that may create

problems as many paths

will go untested.

Extra lines of code can

be removed which can

bring in hidden defects.

It is difficult to maintain

white box testing as the

use of specialized tools

like code analyzers and

debugging tools are

required.

Due to the tester's

knowledge about the

code, maximum

coverage is attained

during test scenario

writing.

Due to the fact that a

skilled tester is needed

to perform white box

testing, the costs are

increased.

 Grey Box Testing

Grey Box testing is a strategy to test the application

with restricted knowledge of the inner workings of an

application. In software testing, the term the more you

know the better conveys a great deal of weight when

testing an application. Mastering the area of a system

dependably gives the analyzer an edge over somebody

with constrained space knowledge. Unlike black box

testing, where the analyzer just tests the application's

client interface, in Grey box testing, the analyzer has

entry to design records and the database. Having this

knowledge, the analyzer can better get ready test

information and test situations when making the test

arrangement.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 102 Vol 1 Issue 2 FEB 2014/109

 Table 3: Grey Box testing

Table 4: Black Box vs Grey Box vs White Box

Black

Box

Testing

Grey Box

Testing

White Box

Testing

The

Internal

Workings

of an

applicatio

n are not

needed to

be

known.

Somewhat

knowledge of

the internal

workings are

known

Tester has full

knowledge of

the Internal

workings of the

application

Also

known as

closed

box

testing,

Another term

for grey box

testing is

translucent

testing as the

Also known as

clear box

testing,

structural

testing or code

data

driven

testing

and

functiona

l testing

tester has

limited

knowledge of

the insides of

the application

based testing

Performe

d by end

users and

also by

testers

and

developer

s

Performed by

end users and

also by testers

and developers

Normally done

by testers and

developers

Testing is

based on

external

expectati

ons -

Internal

behavior

of the

applicatio

n is

unknown

Testing is done

on the basis of

high level

database

diagrams and

data flow

diagrams

Internal

workings are

fully known

and the tester

can design test

data

accordingly

This is

the least

time

consumin

g and

exhaustiv

e

Partly time

consuming and

exhaustive

The most

exhaustive and

time

consuming

type of testing

Not

suited to

algorithm

testing

Not suited to

algorithm

testing

Suited for

algorithm

testing

This can

only be

done by

trial and

error

method

Data domains

and Internal

boundaries can

be tested, if

known

Data domains

and Internal

boundaries can

be better tested

1.2 Levels of testing

It incorporates the diverse procedures that might be

utilized while directing Software Testing. Following are

the fundamental levels of Software Testing:

Advantages Disadvantages

Offers joined profits

of black box and

white box testing

wherever conceivable.

Since the access to source

code is not available, the

capability to head over

the code and test

coverage is restricted.

Grey box testers don't

rely on the source

code; instead they rely

on interface definition

and functional

specifications.

The tests can be

redundant if the software

designer has already run

a test case.

In light of the

constrained data

accessible, a grey box

analyzer can plan

astounding test

situations particularly

around

correspondence

conventions and data

type

Testing each conceivable

input stream is doubtful

on the grounds that it

might take a preposterous

measure of time;

consequently, numerous

program ways will go

handling. untested.

The test is carried out from

 the perspective of the client

and not the designer.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 103 Vol 1 Issue 2 FEB 2014/109

 Functional Testing.

 Non-Functional Testing.

FUNCTIONAL TESTING

This is a kind of black box testing that is focused

around the details of the software that is to be tried. The

application is tried by giving input and after that the

outcomes are inspected that need to comply with the

practicality it was expected for. Useful Testing of the

software is led on a complete, coordinated system to

assess the system's agreeability with its specified

requirements. there are five steps that are included when

testing an application for practicality.

Table 5: Functionality

Steps Description

I The determination of the

functionality that the intended

application is meant to perform.

II The creation of test data based on

the specifications of the application.

III The output based on the test data and

the specifications of the application.

IV The writing of Test Scenarios and

the execution of test cases.

V The comparison of actual and

expected results based on the

executed test cases.

Unit Testing.

This kind of testing is performed by the designers

before the setup is given over to the testing group to

formally execute the experiments. Unit testing is

performed by the particular engineers on the unique

units of source code relegated areas. The objective of

unit testing is to disengage each one some piece of the

program and show that distinct parts are right regarding

requirements and purpose.

Limitations of Unit Testing.

Testing can't get every single bug in an application. It is

difficult to assess each execution way in every software

application. The same is the situation with unit testing.

Integration Testing.

The testing of joined parts of an application to figure

out whether they work rightly together is Integration

testing. There are two strategies for doing Integration

Testing: Bottom-up Integration testing and Top-Down

Integration tests.

Table 6: Integration Testing Method

System Testing.

This is the next level in the testing and tests the system

as a whole. System testing is so essential due to the

accompanying reasons:

 System Testing is the initial step in the Software

Development Life Cycle, where the application is

tried in whole.

 The application is tried completely to check that it

meets the technical and functional requirements.

 The application is tried in an environment which is

near the creation environment where the

application will be installed.

 System Testing empowers us to test, confirm and

approve both the business requirements and in

addition the Applications Architecture.

Regression Testing.

The goal of Regression testing is to guarantee that a

change, for example, a bug fix did not bring about an

alternate issue being uncovered in the application.

Regression testing is so paramount due to the

accompanying reasons:

 Minimize the holes in testing when an application

with progressions made must be tested.

 Testing the new changes to check that the change

made did not influence any possible area of the

application.

 Alleviates Risks when regression testing is

performed on the application.

 Test coverage is expanded without trading off

timetables.

 Increase pace to market the item.

Integration Testing Method

Bottom-up integration

This testing begins with unit testing, followed

by tests of progressively higher-level

combinations of units called modules or builds.

Top-Down integration

This testing, the highest-level modules are

tested first and progressively lower-level

modules are tested after that.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 104 Vol 1 Issue 2 FEB 2014/109

Acceptance Testing.

By performing acceptance tests on an application the

testing group will reason how the application will

perform in fabrication. There are additionally lawful

and contractual prerequisites for acceptance of the

system.

Alpha Testing.

Unit testing, integration testing and system testing when

joined together are known as alpha testing. Throughout

this stage, the accompanying will be tried in the

application:

 Spelling Mistakes

 Broken Links

 Cloudy Directions

 The Application will be tested on machines with

the lowest specification to test loading times and

any latency problems.

Beta Testing.

In beta testing a specimen of the target group tests the

application. Beta testing is otherwise called pre-release

testing. In this stage the spectators will be testing the

accompanying

 Users will install, run the application and send their

feedback to the project team.

 Typographical failures, befuddling application

stream, and even crashes.

 Receiving the feedback, the project team can alter

the issues before releasing the product to the

genuine client.

 The more issues you settle that resolve true client

issues, the higher the nature of your application will

be.

 Having a higher-quality application when you

release to the overall public, will build client

fulfillment.

NON-FUNCTIONAL TESTING.

Non-functional testing of Software includes testing the

Software from the prerequisites which are non-

functional in nature related yet critical a well, for

example, execution, security, client interface etc. some

of the imperative and normally utilized non-functional

testing sorts are said as follows:

Performance Testing.

 It is basically used to distinguish any bottlenecks or

execution issues as opposed to discovering the bugs in

software. There are diverse reasons which help in

bringing down the performance of the software.

 Network delay.

 Client side processing.

 Database transaction processing.

 Load balancing between servers.

 Data rendering.

Performance testing is considered as the vital and

compulsory testing type in terms of following features:

 Speed (i.e. Response Time, data rendering and

accessing)

 Capacity

 Stability

 Scalability

Qualitative or Quantitative testing

 Load Testing.

A methodology of testing the behavior of the Software

by applying most extreme load in terms of accessing

software and controlling large input information. It is

possible at both ordinary and peak load conditions.

 Stress Testing.

This testing sort incorporates the testing of Software

conduct under abnormal conditions. Taking away the

assets, applying load beyond the actual load limit is

Stress testing. This testing might be performed by

testing diverse situations, for example,

 Shutdown or restart of Network ports randomly.

 Turning the database on or off.

 Running different processes that consume resources

such as CPU, Memory, server etc.

 Usability Testing.

Usability testing is a kind of black box testing to

identify any errors and enhancements in the software by

means of observing the user operation.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 105 Vol 1 Issue 2 FEB 2014/109

 Security Testing-

Security testing involves the testing of Software in

order to identify any flaws from security and

vulnerability point of view. Following are the main

aspects which Security testing should ensure

 Confidentiality.

 Integrity.

 Authentication.

 Availability.

 Authorization.

 Non-repudiation.

 Software is secure against known and unknown

vulnerabilities.

 Software data is secure.

 Software is according to all security regulations.

 Input checking and validation.

 SQL insertion attacks.

 Injection flaws.

 Session management issues.

 Cross-site scripting attacks.

 Buffer overflows vulnerabilities

 Directory traversal attaks.

Portability Testing.

Portability testing includes the testing of Software with

intend that it should be re-useable and can be moved

from one Software to another as well. Following are the

strategies that can be used for Portability testing.

 Transferred installed Software from one computer

to another.

 Building executable (.exe) to run the Software on

different platforms.

Following are some pre-conditions for Portability

testing:

 Software should be designed and coded, keeping in

mind Portability Requirements.

 Unit testing has been performed on the associated

components.

 Integration testing has been performed.

 Test environment has been established.

Fuzz Testing-

Fuzz testing is often called fuzzing, robustness [4]

testing or negative testing. This technique feeds random

input to application. The main characteristic of fuzz

testing,

 The input is random

 The reliability criteria

 Fuzz testing can be automated to a high degree.

Compiler testing

The aim of compiler testing [5] is to verify that the

compiler implementation conforms to its specifications,

which is to generate an object code that faithfully

corresponds to the language semantic and syntax as

specified in the language documentation.

Visual testing

The aim of visual testing is to provide developers with

the ability to examine what was happening at the point

of software failure by presenting the data in such a way

that the developer can easily find the information he or

she requires, and the information is expressed clearly.

Smoke and sanity testing

Sanity testing determines whether it is reasonable to

proceed with further testing.Smoke testing is used to

determine whether there are serious problems with a

piece of software, for example as a build verification

test.

Testing Based On Precode Artifacts

Testing techniques [3] can be based on precode

artifacts, such as design, requirements, and architecture

specifications. Techniques that use these precode

specifications for tasks such as test-case planning and

development can help improve the overall testing

process.

 Testing artifacts-The software testing process can

produce several artifacts.

 Test plan-A test specification is called a test plan.

 Traceability matrix-A traceability matrix is a

table that correlates requirements or design

documents to test documents. It is used to change

tests when related source documents are changed,

to select test cases for execution when planning for

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 106 Vol 1 Issue 2 FEB 2014/109

regression tests by considering requirement

coverage.

 Test case-A test case normally consists of a unique

identifier, requirement references from a design

specification, preconditions, events, a series of

steps (also known as actions) to follow, input,

output, expected result, and actual result.

 Test script-A test script is a procedure, or

programming code that replicates user actions.

 Test suite-The most common term for a collection

of test cases is a test suite. The test suite often also

contains more detailed instructions or goals for

each collection of test cases.

 Test fixture or test data-All the test values and

changeable environmental components are

collected in separate files and stored as test data.

 Test harness-The software, tools, samples of data

input and output, and configurations are all refered

to collectivityas a test hames.

2. RESEARCH BACKGROUND

Bounded-exhaustive testing [2] is an automated

approach that checks the code under test for all inputs

within given bounds. It consists of three activities. First,

the user describes a set of test inputs and provides test

oracles that check test outputs. Second, the tool

generates all the inputs, executes them on the code

under test, and checks the outputs using the oracles.

Third, the user inspects failing tests to submit bug

reports or debug the code.

2.1 Sparse Test Generation (STG)

It reduces the time to first failure. The time that the user

has to wait after starting a tool for bounded - exhaustive

testing until tool finds a failing test.

2.2 Structural Test Merging (STM)

It reduces the total time for test generation and

execution. In bounded-exhaustive testing users typically

describe a test set with a large number of small tests.

While we advocate considering test sets with a smaller

number of larger tests.

2.3 Oracle-based Test Clustering (OTC)

It reduces the human time for inspection of failing tests.

Bounded-exhaustive testing can produce a large number

of failing tests, and a tester/developer has to map these

failures to distinct faults to submit bug reports or debug

the code under test.

3. SUGGESTIONS

 Closely work with developers, do some parallel

testing with them as the product/feature is getting

developed.

 Identify and eliminate non-testing activities that

occur in the name of process, documentation,

management, metrics etc.

 Analyze and profile every application under the

portfolio to determine “stable” and “well tested”

areas of the application. These areas should receive

the least or no testing effort.

 Analyze the test scripts suite and remove

redundant, worn out ones. Aim to reduce scripted

test repository as small as you can.

 Review and reduce “regression testing” on the basis

of “well tested/stable areas” of the application.

 Switch from resource intensive and highly scripted

testing approach to highly improvisational

exploratory /rapid testing approaches.

 Plan testing in small but frequent cycles (Session

based exploratory testing approach) – reduce

planning and management overheads.

 Analyze and reduce the usage of costly tool

licenses - especially those do not help in testing

directly (test management tools).

 Cut down on lengthy test plans, testing reports,

dashboards – switch to simple but frequent test

reporting.

 Simplify defect management process – reduce

defect life cycle – resort to informal/quick defect

communication

Four ways to reduce software testing cost without

sacrificing quality

 Manage by walking around and listening.

 Identify and remove barriers to high performance.

 Speed the test process.

 Eliminate excess work-in-progress inventory

4. Conclusion

In this section we surveyed the field of software testing

by providing cost reductionmethods. The software

development process is including the testing process for

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 107 Vol 1 Issue 2 FEB 2014/109

quality assurance. In this paper, we have presented a

survey on software testing based on cost reduction

methods. We provide the basic concept of testing and

different levels of testing for better understanding of

software. We have presented the suggestions to improve

the efficient way reduces the software testing cost.

REFERENCES

[1] KorayIncki, Ismail Ari, HasanSozer, “A Survey of

Software Testing in the Cloud, ” IEEE Sixth

International Conference on Software Security and

Reliability Companion, DOI 10.1109/SERE-C.2012.

[2] Vilas Jagannath, Yun Young Lee, Brett Daniel, and

DarkoMarinov, “Reducing the costs of Bounded-

Exhaustive Testing,” .

[3] Mary Jean Harrold, “Testing: A Roadmap, ” In Future

of Software Engineering, 22nd International Conference

on Software Engineering, June 2000.

[4] Jovanovic, Irena, “Software Testing Methods and

Techniques, ” 2008.

[5] A.S. Boujarwah, K. Saleh, “ Compiler test case

generation methods: a survey and assessment, ”

Information and Software Technology 39 pp 617-

625,1997.

