
ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 120 Vol 1 Issue 3 MAR 2014/102

A METRIC BASED EVALUATION OF TEST CASE PRIORITATION TECHNIQUES-

HILL CLIMBING, REACTIVE GRASP AND TABUSEARCH

1
M.Manjunath,

2
N.Backiavathi

1
PG Scholar, Department of Information Technology,Jayam College of Engineering and Technology, Dharmapuri.

2
Assistance. Professor, Department of Information Technology,Jayam College of Engineering and Technology,

Dharmapuri.
1
idealmanju@gmail.com,

2
ishaaliniiha@gmail.com

Abstract: Regression Test Selection Technique attempt to reduce the cost of Regression testing by selecting and

running a subset of an existing test suite. The goal of the Regression Test Selection Technique is to select the

Reduced Test Suite for the modified version to minimize the cost of the maintenance phase. Total Statement

Coverage approach involves ranking Test Cases from the Reduced Test Suite based on the number of Statements

covered by the Test Case such that the Test Case covering the maximum number of Statements would be executed

first. The test case prioritization process is done in three different approaches, the first approach is based on

Instrumented code, in this the test case that covers maximum changed statements will execute first. The second

prioritization method is based on Hill Climbing algorithm and the third prioritization method follows Tabu based

metaheuristic search procedure. The validation of the three prioritization technique is evaluated with APSC(Average

Percentage of Statement Coverage) and APDC(Average Percentage of Decision Coverage).

Keywords-Regression Test, Metaheuristic Search, Average Percentage of Statement Coverage, Average Percentage

of Decision Coverage

1. INTRODUCTION

Regression testing is applied to the modified version of

the software to ensure that it behaves as intended, and

that modifications have not adversely impacted its

quality. Rerunning the entire Test Suite of the original

version to test the modified version increases the cost of

Regression testing. Control Flow Graph is generated

from the program and the Cyclomatic Complexity is

calculated. Independent Control Flow paths are

extracted from the CFG. Test cases are generated based

on the Cyclomatic Complexity. Each independent

Control Flow path is assigned to the Test case. The Test

cases that have impact on the Changed entities are

selected from the Test Suite of the original version.

Regression Test Selection technique saves the cost of

Regression testing by selecting only subset of Test

cases that has impact on the modified version.

The reduced Test cases are prioritized based on the

Statement Coverage. Total Statement Coverage

approach involves ranking Test cases based on the

number of statements covered by the Test case such that

the Test case covering the maximum number of

statements would be executed first. This approach first

selects the Test case with the maximum Statement

Coverage, adjusts the Coverage information on the

remaining Test cases to reflect the statements not

covered by that Test case, and then iteratively selects a

Test case that provides the largest Statement Coverage

until all Program statements have been covered. Few

drawbacks of the existing system are as follows.

Regression testing that reuses the coverage data

collected when Test suite Ti is run on the original

version for testing subsequent versions so that the

expense of re-computing it for each subsequent version

of the original version is avoided[7,8]. Test suite can be

reused when regression test is executed on modified

versions, so that time and resources of generating test

cases can be reduced. But it is inefficient as it executes

the entire test suite for the subsequent modified

versions.

 A safe regression-test-selection technique selects

every test case from the original test suite that can

expose fault in the modified program.

 Regression-Test-Selection techniques are

particularly effective in environments in which

changed software is tested frequently.

 Regression testing tasks, based on original version,

may be inaccurate for subsequent modified

versions.

mailto:idealmanju@gmail.com,%202%20ishaaliniiha@gmail.com

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 121 Vol 1 Issue 3 MAR 2014/102

2. RELATED WORK

RECOVER (Re-computing Coverage Data), that

implements our technique, along with a set of empirical

studies conducted on a set of Java programs ranging

from 1 to 75 KLOC. These studies show the

inaccuracies that can exist in results of an application

RTS when the outdated or estimated coverage data are

used. For the six subjects we used, RTS applied to

outdated coverage data resulted in, on average, 42.51,

80.26, 83.12, 82.38, 75.41, and 99.01 percent false

positives,4 respectively, and 14.61 percent false

negatives 5 over RTS used with updated coverage data.

For the six subject we used, RTS applied to estimated

coverage data resulted in, on average, 0.68, 54.52,

70.12, 75.30, 68.96, and 90.56 percent false positives,

respectively, and 9.28 percent false negatives over RTS

used with updated coverage data. The studies also show

the efficiency of our technique. For the six subjects we

used, when RTS is augmented with our technique to

compute the mappings and selectively instrumented

programs are run with the test cases selected, the overall

regression testing time is reduced, on average, 11.53

percent over RTS and 65.74 percent over retest-all. The

main contributions of this paper are a description of a

novel technique that computes accurate,

updated coverage data when a program is modified,

without rerunning unnecessary test cases, a discussion

of a tool, RECOVER, that implements the technique

and integrates it with RTS, and a set of empirical

studies that show, for the subjects we studied, that our

technique provides an effective and efficient way to

update coverage data for use on subsequent regression-

testing tasks.

Example: (V0)

Public class Grade{

Public int calcGrade(int finalsScore, int MidTermScore)

{

S1 int Grade=0;

S2 if (finalScore>70){

S3 if(midTermScore>80){

S4 grade=4; } else {

S5 grade=3; }

S6 } else if (final score <50){ S7 grade = 2;} else{

S8 grade = 3;}

S9 System.out.println(“Grade=” +grade);

S10 return grade;

Table 1: V0 –Statement Coverage Matrix

To illustrate the impact that changes can have on

the Coverage information, consider above example

which shows version v0 and subsequent versions v1 and

v2, respectively, of a program consisting of class Grade

and method calcGrade. Version v1 shows changes

c1and c2 from v0 and version v2 shows change c3 from

v1.The test suite T for calcGrade is shown in Table 1.

Figs. 1, 2, and 3 also show the corresponding coverage

matrices based on statements (i.e., statement coverage

matrices) for the versions. In the matrices, for a

particular test case, indicates that a statement was

covered during execution of ti and “0” indicates that a

statement was not covered during execution of ti. For

version v0 (shown in Fig. 1), the matrix shows the

original coverage data because T is run with the base

version of the program (i.e., v0); note that version v0

has 100 percent statement coverage with respect to T.

For versions v1 and v2 (Figs. 2 and 3, respectively), the

matrix on the left shows the outdated coverage data

when the coverage data for v0 are used for the

subsequent versions, and the matrix on the right shows

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 122 Vol 1 Issue 3 MAR 2014/102

the updated coverage.

 Example: (V1)

Public class Grade{ Public int calcGrade(int

finalsScore, int MidTermScore) {

S1 int Grade=0;

S2 if (finalScore>70){

S3 if(midTermScore>80){

S4 grade=4; } else {

S5 grade=3; }

S6 } else if (final score <60){// change c1

S7 grade = 3;

S8 } else if(final score <35){// change c2

S9 grade =1; } else{

S10 grade =2;}

S11 System.out.println(“Grade=” +grade);

S12 return grade;

Table 2: V1 Statement Coverage matrix

We consider RTS, which was briefly described in

Section

 We use an RTS technique imple-mented as

DEJAVOO. DEJAVOO creates control-flow

graphs for the original (Porig) and modified (Pmod)

versions of a program. The Technique traverses

these graphs synchronously over like labeled edges,

in Porig and Pmod are such that both edges have no

label, a true label, a false label, or a matching label

in a switch (or case) statement. The technique

performs the travels or in a depth-first order to

identify dangerous edges. The edges whose sinks

differ and for which test cases in T that executed

the edge in Porig should be rerun on Pmod because

they may behave differently in Pmod.

2.1 Study 1:

The goal of Study 1 is to address research question

RQ1. What are the effects of the three techniques for

providing coverage data outdated, estimated, and

updated on regression test selection (RTS)?

To answer this research question, we used all six

subjects described in Section 4.2. For these subjects, we

populated outdated, estimated, and updated coverage

data. For outdated coverage data, we ran T on v0 to

collect m0, the coverage data for version v0 of program

P. We then usedm0 for RTS activities on subsequent

versions of v0. For estimated coverage data, we used

JDIFF [12] to estimate the coverage data and populate

miþ1 for each version viþ1 using mi, the coverage data

for vi. JDIFF compares two Java programs, vi and viþ1,

and identifies both differences and correspondence

between the two versions. Because JDIFF uses

heuristics to determine differences and

correspondences, it can result in both false positives and

false negatives. The technique is based on a

representation of object-oriented programs that handles

object-oriented features, and thus, can capture the

behavior of the program. Using the correspondence,

which is a mapping between statements in the two

versions, it estimates the coverage for viþ1 using the

coverage data from vi and uses it to populate miþ1. For

updated coverage data, we used our tool RECOVER to

calculate miþ1 for version viþ1 using mi for version vi.

Recall that the updated coverage data that our technique

computes are identical to those computed if all test

cases were rerun. As a check of our RECOVER

implementation, we computed the updated coverage

data by running all test cases on the versions of P and

comparing these accurate coverage data with those

obtained using RECOVER. In all cases, the coverage

data were the same.

The next three columns show the results when

DEJAVOO is run using outdated coverage data the

number of test cases selected, the number of false

positives4 in that set of test cases, and the number of

false negatives5 in that set of test cases. The next three

columns show similar results when DEJAVOO is run

using coverage data estimated with JDIFF. The last

column shows the number of test cases selected by

DEJAVOO using updated coverage data (the same

coverage data as would be obtained by rerunning all test

cases in the test suite). For Jakarta Regexp, ProAX,

and Darpan, the tables show the results of running

DEJAVOO on all pairs of versions. For nanoXML and

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 123 Vol 1 Issue 3 MAR 2014/102

JABA, the tables show only a representative subset of

the results of running DEJAVOO on all pairs of

versions

Figure 1: Avg no of Branches instrumented

2.2 Study 2

The goal of Study 2 is to evaluate research question

RQ3. What is the efficiency of our technique for

pdatingcoverage data as part of a regression testing

process?

To answer this question, we measured and

compared regression-testing time for four approaches:

1. running all test cases in T on all versions of the

program P (i.e., retest-all); 2. selecting T0 using

DEJAVOO and running the test cases in T0 on all

modified versions of P; 3. selecting T0 and recording

mappings using MODDEJAVOO, updating coverage

data for T , T0 using RECOVER, instrumenting the

modified versions of P with full instrumentation, and

running the test cases in T0 on the fully instrumented

modified versions of P; and 4. selecting T0 and

recording the mappings using MOD-DEJAVOO,

updating coverage data for T T0 using RECOVER,

instrumenting modified versions of P using selective

instrumentation, and running test cases in T0 on the

selectively instrumented modified versions of P. Table

11 shows the average timings for regression testing for

the four techniques studied. In the table, the first

column shows the subject on which the experiment was

performed. The second column shows the sum of the

time to perform RTS usingDEJAVOOand the time to

run the selected test cases T0. The third column shows

the sum of the time to perform RTS

EVALUATION TEST CASE PRIORITATION:

This system is to develop a system that provides the

Optimized Test Suite of the modified version by

selecting a subset of Test cases from the Test Suite of

the original version and prioritizing the selected Test

cases based on the coverage data of each Test case. The

system takes as input the original program and its

versions. It then generates Test cases based on the

independent control flow paths of the program versions.

The Test cases that have impact on the Changed

statements in the modified versions are selected from

the Test Suite. The Test cases are then prioritized based

on the Statement Coverage of the Test cases so that the

Test case that covers more number of statements in the

program is given the highest priority and is executed

first. Thus the tester has no need to run all the Test

cases of the original version for the changed statements

minimizing the testing time in the maintenance phase.

The problem of maintaining updated coverage data,

without incurring the expense of rerunning the entire

test suite or the inaccuracy of using outdated or

estimated coverage data, a technique is developed that

influence existing RTS technique to compute accurate,

updated coverage data without rerunning any test cases

that do not execute the change.

Figure 1: Nodes Vs Probability of Structural Attack

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 124 Vol 1 Issue 3 MAR 2014/102

2.3 Test Plan

 The Test Plan is derived from the Functional

Specifications, and detailed Design Specifications. The

Test Plan identifies the details of the test approach,

identifying the associated Test case areas within the

specific product for this release cycle.

2.4 Entity Mapping:

Test suite reduction system compares the original and

modified versions and extracts equivalent statements

present in both the versions. It then maps the entities

with line numbers whose statement matches between

the original and the modified versions.

2.5 Computation of Cyclomatic Complexity

Control Flow Graph is generated from the program

versions. The number of nodes, edges and the

Cyclomatic complexity of the module of the program

version are calculated.

Cyclomatic complexity= E-N+2

E-Edge, N-Node

2.6 Instrumentation

Test suite reduction system performs instrumentation of

the changed and affected entities. The changed entities

are extracted from the modified version and the entities

reachable from the changed entities are also extracted as

affected entities. The changed and affected entities are

integrated into instrumented code.

2.7 Reactive GRASP for Test Case Prioritization:

The Test cases are ordered in the decreasing order of

Instrumented Statement Coverage. The Test case pair

that covers more number of different statements is given

the highest priority.

Algorithm :

1: initialize probabilities associated with α (all equal to

1 n)

2: for i = 1 to max iterations do

3: α ← select α (αSet);

4: solution ← run construction phase(α);

5: solution ← run local search phase(solution);

6: update solution(solution, best solution);

7: end;

8: return best solution.

2.8 Statement Coverage Vs Block Coverage:

The coverage matrix is used to indicate the statement

coverage for each test case. Let the sample coverage

matrix for a program set.

2.9 Statement Coverage:

This metric reports whether each executable statement

is encountered. Control-flow statements, such as if, for,

and switch are covered if the expression controlling the

flow is covered as well as all the contained statements.

Implicit statements, such as an omitted return, are not

subject to statement coverage.

2.10 Block coverage:

Block coverage is the same as statement coverage

except the unit of code measured is each sequence of

non-branching statements.

Table.3 Block Coverage Vs Statement Coverage

Program Set

Number of

Instrumented

Code in LOC

(Exsisting

System-Block

Coverage)

Number of

Instrumented

Code in LOC

(Proposed

System-

Statement

Coverage)

Program Set-

1

28 35

Program Set-

2

45 56

Program Set-

3

26 36

Program Set-

4

12 23

Program Set-

5

14 26

Program Set-

6

26 52

Program Set-

7

46 86

Program Set-

8

35 46

Program Set-

9

9 13

Program Set-

10

36 59

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 125 Vol 1 Issue 3 MAR 2014/102

Figure 2: Graph for Statement Vs Block

Average Coverage Percentage of test case=

No of Statement Covered by a Test case

Total no of Statements

= 8/12

= 66.67%

2.11 Hill Climbing Based Prioritization :

The Test cases are generated from the independent

Control Flow paths of the program. The Testcases are

prioritized based on random search within the

Restricted Candidate List.

Algorithm:

1: initial solution c=∅

2: initialize the candidate set C with random test cases

from the pool of test cases;

3: s ← test case from the RCL at random;

4: while s not locally optimal do

5: Find s ∈ Neighbour (s) with f (s”) < f(s);

6: solution ←solution ∪{s};

7: end;

8: return s;

2.12 Tabu Search:

The Tabu Search examines a trajectory sequence of

solutions and moves to the best neighbor of the current

solution. To avoid cycling, solutions that were recently

examined are forbidden, or tabu, for a number of

iterations.

Algorithm:

Input: Problem set P , with |P | = n Test cases

Input: Number of initial solutions required, I

(1) identify I ⊂ P , a randomly identified subset with I

nodes from problem set ;

(2) foreach I ∈ I do

(3) P 0 ← P \ {I };

(4) find initial solution s by executing Initial solution

heuristic with P0 ;

(5) re-insert I into initial solution to create Ti

(6) end

3. RESULTS

The results obtained after performing testing on

different program versions, the instrumentation coding

test case prioritation technique is efficient for small

programs. And Hillclimbing technique is gives only

feasible solution for any program testing, so retesting

the program becomes must. The best algorithm which

suits for small and large programs also and provides

best optimum solution.

4. CONCLUSION

Regression Test Selection technique that provides

updated coverage data for a modified program without

re-running all test cases in the test suite that was

developed for the original program. The selective

instrumentation process instruments only the affected

statements, and thus, reduces the amount of

instrumentation. By running the test cases selected only

for affected statements, the technique updates coverage

data for test cases that exercise the change. Using the

mapping information provided by the computation of

entity map, the technique updates coverage data for test

cases that do not exercisechanges. The RTS technique is

safe and selects important test cases for the modified

version and omits unimportant test cases for the

statements that exercise change in the modified version.

This reduction results in a savings in the time to run the

test cases selected, and thus, reduces the overall

regression testing time. The phase I of the project

focuses on reducing the test cases for testing the

modified version.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 126 Vol 1 Issue 3 MAR 2014/102

REFERENCES

[1] Gregg Rothermel and Mary Jean Harrold. “Analyzing

regression test selection techniques”, IEEE Transactions

on Software Engineering, Vol.22, No.8, pp 529-551,

1996.

[2] J.-M. Kim, A. Porter, and G. Rothermel. “An empirical

study of regression test application frequency”, In

Proceedings of the 22nd International Conference on

Software Engineering, pp 126-135, 2000.

[3] F. Vokolos and P. Frankl, “Pythia: A RegressionTest

Selection Tool Based on Text Differencing,” Proc.

IEEE International Conference on Reliability, Quality

and Safety of Software Intensive Systems, pp. 3-21,

1997.

[4] S. Elbaum, D. Gable, and G. Rothermel, “The Impact of

Software Evolution on Code Coverage Information.”

Proc. IEEE International Conference on Software

Maintenance, pp. 170-179, 2001.

[5] G. Rothermel, M. J. Harrold, and J. Dedhia.

“Regression test selection for C++ software”, Journal of

Software Testing, Verification, and Reliability, Vol. 10,

No.6, pp.77-109,2000.

[6] L. J. White and K. Abdullah.” A firewall approach for

regression testing of objectoriented software”, In

Proceedings of 10thAnnual Software Quality Week,

1997.

[7] H.K.N. Leung and L. White. “Insights into Regression

Testing.” In Proceedings of Conference on Software

Maintenance. pp. 60– 69, 2005.

[8] G. Rothermel and M.J. Harrold.” Analyzin regression

test selection techniques.” IEEE Transactions on

Software Engineering, Vol.22, No.8, pp.529–551, 1996.

[9] Kewen Li, Zhixia Yang,” An Improved AETG Test

Suite Optimization Method Based on Regressing Test

Model.”IEEE Computer Society, 2008.

[10] A. 1Orso, N. Shi, and M.J. Harrold, “Scaling

Regression Testing to Large Software Systems”,

Proceedings of 12th ACM SIGSOFT Symposium on

Foundations of Software Engineering. pp. 241-252,

2004.

[11] Mary Jean Harrold and James A. Jones,” Regression

Test Selection for Java Software” Proc. of the ACM

Conf. on OO Programming, Systems, Languages, and

Applications ACM Copyright,pp.120-130, 2006.

[12] Guoqing Xu (2006),’ A Regression Tests Selection

Technique for Aspect-Oriented Programs’ Proc. of the

ACM Conf. on Software Engineering, ACM Copyright,

pp.120-130.

