
ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 196 Vol 1 Issue 3 MAR 2014/116

A LOAD BALANCING MODEL BASED ON CLOUD PARTITIONING

1
A.Vimal,

2
C.Sivakumar

1
Research Scholar, Department of Information Technology, Jayam College of Engineering and Technology, Dharmapuri

2
Associate Professor, Department of Information Technology, Jayam College of Engineering and Technology,

Dharmapuri

1
vimalcse117@rediffmail.com ,

2
svkumar650@gmail.com

Abstract: In this paper we present a game theoretic framework for obtaining a user-optimal load balancing scheme

in hetero- generous distributed systems. Load balancing in the cloud computing environment has an important

impact on the performance. Good load balancing makes cloud computing more efficient and improves user

satisfaction. This article introduces a better load balance model for the public cloud based on the cloud partitioning

concept with a switch mechanism to choose different strategies for different situations. The algorithm applies the

game theory to the load balancing strategy to improve the efficiency in the public cloud environment.

 Keywords: Game theory, load balancing, cloud computing.

1. INTRODUCTION

Cloud computing is an attracting technology in the field

of computer science. In Gartner’s report [1], it says that

the cloud will bring changes to the IT industry. The

cloud is changing our life by providing users with new

types of services. Users get service from a cloud

without paying attention to the details. NIST gave a

definition of cloud computing as a model for enabling

ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider

interaction. More and more people pay attention to

cloud computing. Cloud computing is efficient and

scalable but maintaining the stability of processing so

many jobs in the cloud computing environment is a

very complex problem with load balancing receiving

much attention for researchers’ distributed system can

be viewed as a collection of computing and

communication resources shared by active users. When

the demand for computing power increases the load

balancing problem becomes important. A general for-

mulation of this problem is as follows: given a large

number of jobs, find the allocation of jobs to computers

optimizing a given objective function (e.g. total

execution time).

There are three typical approaches to load

balancing problem in distributed systems:

 Global approach: In this case there is only one

decision maker that optimizes the response time of

the entire system over all jobs and the operating

point is called social (overall) optimum.

 Cooperative approach: In this case there are several

decision makers (e.g. jobs, computers) that

cooperate in making the decisions such that each of

them will operate at its optimum. Decision makers

have complete freedom of pre play communication

to make joint agreements about their operating

points. This situation can be modeled as a

cooperative game and game theory offers a suitable

modeling frame work.

 Non cooperative approach: In this case there are

several decision makers (e.g. users, jobs) that are

not allowed to cooperate in making decisions. Each

decision maker op- times its own response time

independently of the others and they all eventually

reach equilibrium. This situation can be viewed as

a non-cooperative game among decision makers.

The equilibrium is called Nash equilibrium and it

can be obtained by a distributed non cooperative

policy. At the Nash equilibrium a decision maker

cannot receive any further benefit by changing its

own decision. If the number of decision makers is

not finite the Nash equilibrium is called War drop

equilibrium.

http://www.ijiser.com/
mailto:1vimalcse117@rediffmail.com
mailto:2svkumar650@gmail.com

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 197 Vol 1 Issue 3 MAR 2014/116

1.1 Existing Result

 There exist only few studies on game theoretic models

and algorithms for load balancing in distributed

systems. Kameda et al. [6] studied non cooperative

games and de- rived load balancing algorithms for

computing the War drop equilibrium in single class and

multi-class job distributed systems. Rough garden [16]

formulated the load balancing problem as a Stackelberg

game. In this type of non-cooperative game one player

acts as a leader and the rest as followers. He showed

that it is NP-hard to compute the optimal Stackelberg

strategy and presents efficient algorithms to compute

strategies inducing near-optimal solutions.

Routing traffic in networks is a closely related

problem that received more attention. Orda et al. [14]

studied a non- cooperative game in a network of

parallel links with convex cost functions. They studied

the existence and uniqueness of the Nash equilibrium.

Altman et al. investigated the same problem in a

network of parallel links with linear cost functions.

Korilis et al. considered the capacity allocation problem

in a network shared by noncooperative users. They

studied the structure and the properties of Nash

equilibrium for a routing game with M/M/1 type cost

functions. An important line of research was initiated

by Koutsoupias and Papadimitriou, who considered a

non-cooperative routing game and proposed the ratio

between the worst possible Nash equilibrium and the

overall optimum as a measure of effectiveness of the

system. Rough garden and Tardos showed that in a

network in which the link cost functions are linear the

flow at Nash equilibrium has total latency at most 4/3

that of the overall optimal flow. They also showed that

if the link cost functions are assumed to be only

continuous and non-decreasing the total latency may be

arbitrarily larger than the minimum possible total

latency.

1.2 Our results

Most of the previous studies on static load balancing

considered as their main objective the minimization of

overall expected response time. This is difficult to

achieve in distributed systems where there is no central

authority control- ling the allocation and users are free

to act in a selfish manner. Our goal is to find a formal

framework for characterizing user-optimal allocation

schemes in distributed systems. The framework was

provided by noncooperative game the- ory which has

been applied to routing and flow control problems in

networks but not to load balancing in distributed

systems. Using this framework we formulate the load

balancing problem in distributed systems as a

noncooperative game among users. The Nash

equilibrium provides a user- optimal operation point for

the distributed system. We give a characterization of the

Nash equilibrium and a distributed algorithm for

computing it. We compare the performance of our

noncooperative load balancing scheme with that of

other existing schemes. Our scheme guarantees the

optimality of allocation for each user in the distributed

system.

1.3 Organization

The paper is structured as follows. In Section 2 we

present the system model and we introduce our load

balancing non- cooperative game. In Section 3 we

derive a greedy dis- tributed algorithm for computing

the Nash equilibrium for our load balancing game. In

Section 4 the performance of our load balancing

scheme is compared with those of other existing

schemes. In Section 5 we draw conclusions and present

future directions.

2. LOAD BALANCING AS A N O N

COOPERATIVE G A M E AMONG USERS

We consider a distributed system that consists of

heterogeneous computers shared by users. Each

computer is modeled as an M/M/1 queuing system (i.e.

Poisson arrivals and exponentially distributed

processing times). Com- puteris characterized by its

average processing rate Jobs are generated by user with

an average rat, and is the total job arrival rate in the

system. The total job arrival rate must be less than the

aggregate processing rate of the system model is

presented in Figure 1. The users have to decide on how

to distribute their jobs to computers such that they will

operate optimally. Thus user must find the fraction of

all its jobs that are assigned to computer such that the

expected execution time of its jobs is minimized.

http://www.ijiser.com/

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 198 Vol 1 Issue 3 MAR 2014/116

Figure 1: The distributed system model

We formulate this problem as a noncooperative

game among users under the assumption that users are

’selfish’. This means that they minimize the expected

response time of their own jobs.

3. SYSTEM MODEL

 There are several cloud computing categories with this

work focused on a public cloud. A public cloud is based

on the standard cloud computing model, with service

provided by a service provider. A large public cloud

will include many nodes and the nodes in different

geographical locations. Cloud partitioning is used to

manage this large cloud. A cloud partition is a subarea

of the public cloud with divisions based on the

geographic locations. The load balancing strategy is

based on the cloud partitioning concept. After creating

the cloud partitions, the load balancing then starts:

when a job arrives at the system, with the main

controller deciding which cloud partition should receive

the job. The partition load balancer then decides how to

assign the jobs to the nodes. When the load status of a

cloud partition is normal, this partitioning can be

accomplished locally. If the cloud partition load status

is not normal, this job should be transferred to another

partition.

3.1 Main controller and balancers

 The load balance solution is done by the main

controller and the balancers. The main controller first

assigns jobs to the suitable cloud partition and then

communicates with the balancers in each partition to

refresh this status information. Since the main

controller deals with information for each partition,

smaller data sets will lead to the higher processing

rates. The balancers in each partition gather the status

information from every node and then choose the right

strategy to distribute the jobs. refresh this status

information. Since the main controller deals with

information for each partition, smaller data sets will

lead to the higher processing rates. The balancers in

each partition gather the status information from every

node and then choose the right strategy to distribute the

jobs.

3.2 Assigning jobs to the cloud partition

When a job arrives at the public cloud, the first step is

to choose the right partition. The cloud partition status

can be divided into three types: Idle: When the

percentage of idle nodes exceeds change to idle status.

Normal: When the percentage of the normal nodes

exceeds change to normal load status. Overload: When

the percentage of the overloaded nodes exceeds, change

to overloaded status. The parameters and are set by the

cloud partition balancers. The main controller has to

communicate with the balancers frequently to refresh

the status information. The main controller then

dispatches the jobs using the following strategy: When

job i arrives at the system, the main controller queries

the cloud partition where job is located. If this

location’s status is idle or normal, the job is handled

locally. If not, another cloud partition is found that is

not overloaded. The algorithm is shown in Algorithm

1.

3.3 Assigning jobs to the nodes in the cloud

 Partition The cloud partition balancer gathers load

information from every node to evaluate the cloud

partition status. This evaluation of each node’s load

status is very important. The first task is to define the

load degree of

Algorithm 1 Best Partition Searching

begin

while job do

Search Best Partition

(job);

http://www.ijiser.com/

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 199 Vol 1 Issue 3 MAR 2014/116

if partition State == idle k partition State == normal

then

Send Job to Partition;

Else

search for another

Partition; end if

end

while

end

each nodes

The node load degree is related to various static

parameters and dynamic parameters. The static

parameters include the number of CPU’s, the CPU

processing speeds, the memory size, etc. Dynamic

parameters are the memory utilization ratio, the CPU

utilization ratio, the network bandwidth, etc. The load

degree is computed from these parameters as below:

Step 1 Define a load parameter set: F D fF1; F2;; Fmg

with each Fi .1 6 i 6 m; Fi 2 .0; 1/ parameter being

either static or dynamic. M represents the total number

of the parameters.

Step 2 Compute the load degree as: Load degree. N / D

Xm iD1 iFi ; i . Pn iD1 _i D 1/ are weights that may

differ for different kinds of jobs.N represents the

current node.

Step 3 Define evaluation benchmarks. Calculate the

average cloud partition degree from the node load

degree statistics as: Load degree avg D Pn iD1 Load

degree.Ni / nThe bench mark Load degree high is then

set for different situations based on the Load degreeavg.

Step 4 Three nodes load status levels are then defined

as: Idle When Load degree.N / D 0;there is no job being

processed by this node so the status is charged to Idle.

Normal For 0 < Load degree.N / 6 Load degreehigh; the

node is normal and it can process other jobs.

Overloaded When Load degreehigh 6 Load degree.N /;

the node is not available and cannot receive jobs until it

returns to the normal. The load degree results are input

into the Load Status Tables created by the cloud

partition balancers. Each balancer has a Load Status

Table and refreshes it each fixed period T. The table is

then used by the balancers to calculate the partition

status. Each partition status has a different load

balancing.

4. CLOUD PARTITION LOAD BALANCING

STRATEGY

4.1 Motivation

Good load balance will improve the performance of the

entire cloud. However, there is no common method that

can adapt to all possible different situations. Various

methods have been developed in improving existing

solutions to resolve new problems. Each particular

method has advantage in a particular area but not in all

situations. Therefore, the current model integrates

several methods and switches between the load balance

method based on the system status. A relatively simple

method can be used for the partition idle state with a

more complex method for the normal state. The load

balancers then switch methods as the status changes.

Here, the idle status uses an improved Round Robin

algorithm while the normal status uses a game theory

based load balancing strategy .solution. When a job

arrives at a cloud partition, the balancer assigns the job

to the nodes based on its current load strategy. This

strategy is changed by the balancers as the cloud

partition status changes.

4.2 Load balance strategy for the idle status

 When the cloud partition is idle, many computing

resources are available and relatively few jobs are

arriving. In this situation, this cloud partition has the

ability to process jobs as quickly as possible so a simple

load balancing method can be used. There are many

simple load balance algorithm methods such as the

Random algorithm, the Weight Round Robin, and the

Dynamic Round Robin. The Round Robin algorithm is

used here for its simplicity.

The Round Robin algorithm is one of the simplest

load balancing algorithms, which passes each new

request to the next server in the queue. The algorithm

does not record the status of each connection so it has

no status information. In the regular Round Robin

algorithm, every node has an equal opportunity to be

chosen. However, in a public cloud, the configuration

and the performance of each node will be not the same;

thus, this method may overload some nodes. Thus, an

http://www.ijiser.com/

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 200 Vol 1 Issue 3 MAR 2014/116

improved Round Robin algorithm is used , which called

“Round Robin based on the load degree evaluation”.
The algorithm is still fairly simple. Before the Round

Robin step, the nodes in the load balancing table are

ordered based on the load degree from the lowest to the

highest. The system builds a circular queue and walks

through the queue again and again. Jobs will then be

assigned to nodes with low load degrees. The node

order will be changed when the balancer refreshes the

Load Status Table. However, there may be read and

write inconsistency at the refresh period T . When the

balance table is refreshed, at this moment, if a job

arrives at the cloud partition, it will bring the

inconsistent problem. The system status will have

changed but the information will still be old. This may

lead to an erroneous load strategy choice and an

erroneous nodes order. To resolve this problem, two

Load Status Tables should be created as: When the flag

= “Read”, then the Round Robin based on the load

degree evaluation algorithm is using this table. When

the flag = “Write”, the table is being refreshed, new

information is written into this table. Thus, at each

moment, one table gives the correct node locations in

the queue for the improved Round Robin algorithm,

while the other is being prepared with the updated

information. Once the data is refreshed, the table flag is

changed to “Read” and the other table’s flag is changed

to “Write”. The two tables then alternate to solve the

inconsistency.

4.3 Load balancing strategy for the normal status

 When the cloud partition is normal, jobs are arriving

much faster than in the idle state and the situation is far

more complex, so a different strategy is used for the

load balancing. Each user wants his jobs completed in

the shortest time, so the public cloud needs a method

that can complete the jobs of all users with reasonable

response time. Penmatsa and Chronopoulos proposed a

static load balancing strategy based on game theory for

distributed systems. And this work provides us with a

new review of the load balance problem in the cloud

environment. As an implementation of distributed

system, the load balancing in the cloud computing

environment can be viewed as a game. Game theory has

non-cooperative games and cooperative games. In

cooperative games, the decision makers eventually

come to an agreement which is called a binding

agreement. Each decision maker decides by comparing

notes with each other’s. In non-cooperative games, each

decision maker makes decisions only for his own

benefit. The system then reaches the Nash equilibrium,

where each decision maker makes the optimized

decision. The Nash equilibrium is when each player in

the game has chosen a strategy and no player can

benefit by changing his or her strategy while the other

player’s strategies remain unchanged. There have been

many studies in using game theory for the load

balancing. Grosu et al. proposed a load balancing

strategy based on game theory for the distributed

systems as a non- cooperative game using the

distributed structure. They compared this algorithm

with other traditional methods to show that their

algorithm was less complexity with better performance.

Aote and Kharat gave a dynamic load balancing model

based on game theory. This model is related on the

dynamic load status of the system with the users being

the decision makers in a non-cooperative game. Since

the grid computing and cloud computing environments

are also distributed system, these algorithms can also be

used in grid computing and cloud computing

environments. Previous studies have shown that the

load balancing strategy for a cloud partition in the

normal load status can be viewed as a noncooperative

game, as described here. The players in the game are

the nodes and the jobs. Suppose there are n nodes in the

current cloud partition with N jobs arriving, then define

the following parameters: i : Processing ability of each

node, i D 1; n. j : Time spending of each job. D PN jD1

_j : Time spent by the entire cloud partition, _ < Pn iD1

_i . sj i : Fraction of job j that assigned to node I Pn iD1

sj i D 1 and 0 6 sj i 6 1). In this model, the most

important step is finding the appropriate value of sj i .

The current model uses the method of Grosu et al.

called “the best reply” to calculate sj i of each node,

with a greedy algorithm then used to calculate sj i for

all nodes. This procedure gives the Nash equilibrium to

minimize the response time of each job. The strategy

then changes as the node’s statuses change.

5. FUTURE WORK

Since this work is just a conceptual framework, more

work is needed to implement the framework and

resolve new problems. Some important points are:

Cloud division rules: Cloud division is not a simple

problem. Thus, the framework will need a detailed

cloud division methodology. For example, nodes in a

cluster may be far from other nodes or there will be

some clusters in the same geographic area that are still

http://www.ijiser.com/

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 201 Vol 1 Issue 3 MAR 2014/116

far apart. The division rule should simply be based on

the geographic location (province or state). How to set

the refresh period: In the data statistics analysis, the

main controller and the cloud partition balancers need

to refresh the information at a fixed period. If the period

is too short, the high frequency will influence the

system performance. If the period is too long, the

information will be too old to make good decision.

Thus, tests and statistical tools are needed to set a

reasonable refresh periods.

A better load status evaluation: A good algorithm is

needed to set Load degreehigh and Load degree, and

the evaluation mechanism needs to be more

comprehensive. Find other load balance strategy: Other

load balance strategies may provide better results, so

tests are needed to compare different strategies. Many

tests are needed to guarantee system availability and

efficiency.

6. ACKNOWLEDGEMENTS

 We would like to thank the editors and anonymous

reviewers for their valuable comments and helpful

suggestions.

REFERENCES

[1] R.Hunter, The why ofcloud

,http://www.gartner.com/DisplayDocument?doc

cd=226469&ref= g noreg, 2012.

[2] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and

A. Vakali, Cloud computing: Distributed internet

computing for IT and scientific research, Internet

Computing, vol.13, no.5, pp.10- 13, Sept.-Oct. 2009.

[3] P. Mell and T. Grance, The NIST definition of cloud

computing, http://csrc.nist.gov/

publications/nistpubs/800- 145/SP800-145.pdf, 2012.

[4] Microsoft Academic Research, Cloud

computing,http://libra.msra.cn/Keyword/6051/cloud

computing?query= cloud%20computing, 2012.

[5] Google Trends, Cloud computing,

http://www.google.com/trends/explore#q=cloud%20com

puting, 2012.

[6] N. G. Shivaratri, P. Krueger, and M. Singhal, Load

distributing for locally distributed systems, Computer,

vol. 25, no. 12, pp. 33-44, Dec. 1992.

[7] B. Adler, Load balancing in the cloud: Tools, tips and

techniques, http://www.rightscale. com/info

center/whitepapers/ Load-Balancing-in-the-Cloud.pdf,

2012.

[8] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C.

Mcdermid, Availability and load balancing in cloud

computing, presented at the 2011 International

Conference on Computer and Software Modeling,

Singapore, 2011.

[9] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P.

Singh, N. Nitin, and R. Rastogi, Load balancing of nodes

in cloud using ant colony optimization, in Proc. 14th

International Conference on Computer Modelling and

Simulation (UKSim), Cambridgeshire, United

Kingdom,Mar. 2012, pp. 28-30.

[10] M. Randles, D. Lamb, and A. Taleb-Bendiab, A

comparative study into distributed load balancing

algorithms for cloud computing, in Proc. IEEE 24th

International Conference on Advanced Information

Networking and Applications, Perth, Australia, 2010, pp.

551-556.

[11] A. Rouse, Public cloud,http:// search cloud computing.

Tech target.com/definition/public- cloud, 2012.

[12] D. MacVittie, Intro to load balancing for developers The

algorithms,

https://devcentral.f5.com/blogs/us/introtoload- balancing

-for-developers -ndash-thealgorithms,2012.

[13] S. Penmatsa and A. T. Chronopoulos, Game-theoretic

static load balancing for distributed systems, Journal of

Parallel and Distributed Computing, vol. 71, no. 4, pp.

537-555, Apr.2011.

[14] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, Load

balancing in distributed systems: An approach using

cooperative games, in Proc. 16th IEEE Intl. Parallel and

Distributed Processing Symp., Florida, USA, Apr. 2002,

pp. 52-61.

[15] S. Aote and M. U. Kharat, A game-theoretic model for

dynamic load balancing in distributed systems, in Proc.

The International Conference on Advances in

Computing, Communication and Control (ICAC3 ’09),

New York, USA 2009,pp 235-238.

http://www.ijiser.com/
https://devcentral.f5.com/blogs/us/introtoload-%20balancing%20-for-developers%20-ndash-thealgorithms,2012
https://devcentral.f5.com/blogs/us/introtoload-%20balancing%20-for-developers%20-ndash-thealgorithms,2012

