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Abstract: We are taking out the concerted data and data publishing issues for anonymizing detachment. Here data’s 

are considered into two types of detachment, one is horizontally another one is vertically. Here the anonymizing 

data’s are horizontally detachment at no of data providers. We notice the internally attacked by data providers. They 

are using its own records to conclude through by other third parties. We give the m-privacy condition. This 

condition is taking cover and satisfying the privacy rules. Then we have given the heuristic algorithms. This 

algorithm is using the no of corresponding groups of privacy rules. And recently using the adaptive ordering 

techniques for professionally inspected the m-privacy records. The above conditions and algorithms are using the 

data’s are highly protected and safe with effectively. 

1. INTRODUCTION 

Privacy preserving data analysis and data publishing 

has received considerable attention in recent years as 

promising approaches for sharing data while preserving 

individual privacy. When the data are distributed 

among multiple data providers or data owners, two 

main settings are used for anonymization. One 

approach is for each provider to anonymize the data 

independently (anonymize-and-aggregate, which results 

in potential loss of integrated data utility. A more 

desirable approach is concerted data publishing which 

anonymizes data from all providers as if they would 

come from one source (aggregateand-anonymize), 

using either a trusted third-party (TTP) or Secure Multi-

party Computation (SMC) protocols to do 

computations. 

 
 

Figure 1: Distributed data publishing settings 

 

Our goal is to publish an anonymized view of the 

integrated data such that a data recipient including the 

data providers will not be able to compromise the 

privacy of the individual records provided by other 

parties. Considering different types of malicious users 

and information they can use in attacks, we identify 

three main categories of attack scenarios. While the first 

two are addressed in existing work, the last one receives 

little attention and will be the focus of this paper. 

A data recipient, e.g. P0, could be an attacker and 

attempts to infer additional information about the 

records using the published data (T*) and some 

background knowledge (BK) such as publicly available 

external data. Most literature on privacy preserving data 

publishing in a single provider setting considers only 

such attacks. Many of them adopt a weak or relaxed 

adversarial or Bayes-optimal privacy notion to protect 

against specific types of attacks by assuming limited 

background knowledge. For example, k-anonymity 

prevents identity disclosure attacks by requiring each 

equivalence group, records with the same quasi-

identifier values, to contain at least k records. 

Representative constraints that prevent attribute 

disclosure attacks include l-diversity, which requires 

each equivalence group to contain at least l “well-

represented” sensitive values, and t-closeness, which 

requires the distribution of a sensitive attribute in any 

equivalence group to be close to its distribution in the 

whole population. 

They can attempt to infer additional information 

about data coming from other providers by analyzing 

the data received during the anonymization. A trusted 

third party (TTP) or Secure Multi-Party Computation 

(SMC) protocols can be used to guarantee there is no 

disclosure of intermediate information during the 
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anonymization. However, either TTP or SMC do not 

protect against data providers to infer additional 

information about other records using the anonymized 

data and their own data (discussed below). Since the 

problem is orthogonal to whether a TTP or SMC is used 

for implementing the algorithm, without loss of 

generality, we have assumed that all providers use a 

TTP for anonymization and note that an SMC variant 

can be implemented. 

We define and address this new type of “insider 

attack” by data providers in this paper. In general, we 

define an m adversary as a coalition of m colluding data 

providers or data owners, who have access to their own 

data records as well as publicly available background 

knowledge BK and attempts to infer data records 

contributed by other data providers. Note that 0-

adversary can be used to model the external data 

recipient, who has only access to the external 

background knowledge. Since each provider holds a 

subset of the overall data, this inherent data knowledge 

has to be explicitly modelled and checked when the 

data are anonymized using a weak privacy constraint 

and assuming no instance level knowledge. 

We illustrate the m-adversary threats with an 

example shown in Table I. Assume that hospitals P1, 

P2, P3, and P4 wish to collaboratively anonymize their 

respective patient databases T1, T2, T3, and T4. In each 

database, Name is an identifier, f Age, Zip g is a quasi-

identifier (QI), and Disease is a sensitive attribute. Ta* 

is one possible QI-group-based anonymization using 

existing approaches that guarantees k anonymity and l-

diversity (k = 3, l = 2). Note that l diversity holds if 

each equivalence group contains records with at least l 

different sensitive attribute values. However, an 

attacker from the hospital P1, who has access to T1, 

may remove all records from Ta* that are also in T1 

and find out that there is only one patient between 20 

and 30 years old. Combining this information with 

background knowledge BK, P1 can identify Sara’s 

record (highlighted in the table) and her disease 

Epilepsy. In general, multiple providers may collude 

with each other, hence having access to the union of 

their data, or a user may have access to multiple 

databases, e.g. a physician switching to another 

hospital, and use the increased data knowledge to infer 

data at other nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: m-adversary and m-privacy example 

Contributions 

In this paper, we address the new threat by m-

adversaries and make several important contributions. 

First, we introduce the notion of m-privacy that 

explicitly models the inherent data knowledge of an m-

adversary and protects anonymized data against such 

adversaries with respect to a given privacy constraint. 

For example, an anonymization satisfies m-privacy with 

respect to l-diversity if the records in each equivalence 

group excluding ones from any m-adversary still satisfy 

l-diversity. In our example in Table I, Tb* is an 

anonymization that satisfies m-privacy (m = 1) with 

respect to k-anonymity and l-diversity (k = 3, l = 2). 

Second, to address the challenges of checking a 

combinatorial number of potential m-adversaries, we 

present heuristic algorithms for efficiently verifying m-

privacy given a set of Records. Our approach utilizes 

effective pruning strategies exploiting the equivalence 

group monotonicity property of privacy constraints and 

adaptive ordering techniques based on a novel notion of 

privacy fitness. Finally, we present a data provider-

aware anonymization algorithm with adaptive strategies 

of checking m-privacy to ensure high utility and m 

privacy of sanitized data with efficiency. We 

experimentally show the feasibility and benefits of our 

approach using real world dataset. 

 

2.    M-PRIVACY DEFINITION 

We first formally describe our problem setting. Then 

we present our m-privacy definition with respect to a 

given privacy constraint to prevent inference attacks by 

m-adversary, followed by its properties. Let T = t1, t2 . 

. . be a set of records horizontally distributed among n 

data providers P = P1, P2. . . Pn, such that Ti _ T is a set 

of records provided by Pi. We assume AS is a sensitive 

attribute with domain DS. If the records contain 
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multiple sensitive attributes then a new sensitive 

attribute AS can be defined as a Cartesian product of all 

sensitive attributes. Our goal is to publish an 

anonymized table T* while preventing any m-adversary 

from inferring AS for any single record. 

 

2.1 m-Privacy 

To protect data from external recipients with certain 

background knowledge BK, we assume a given privacy 

requirement C, defined by a conjunction of privacy 

constraints: C1 ^ C2 ^ . . . ^ Cw. If a set of records T* 

satisfies C, we say C (T*) true. Any of the existing 

privacy principles can be used as a component 

constraint. In our example (Table I), the privacy 

constraint C is defined as C = C1 ^ C2, where C1 is k-

anonymity with k = 3, and C2 is l-diversity with l = 2. 

Both anonymized tables, Ta* and Tb* satisfies C, 

although as we have shown earlier, Ta* may be 

compromised by an m-adversary such as P1. 

We now formally define a notion of m-privacy 

with respect, to a privacy constraint C, to protect the 

anonymized data against m-adversaries in addition to 

the external data recipients. The notion explicitly 

models the inherent data knowledge of an m-adversary, 

the data records they jointly contribute, and requires 

that each equivalence group, excluding any of those 

records owned by an m-adversary, still satisfies C. 

Definition 2.1: (m-PRIVACY) Given n data providers, 

a set of records T, and an anonymization mechanism A, 

an m-adversary I (m<=n-1) is a coalition of m 

providers, which jointly contributes a set of records TI. 

Sanitized records T* = A (T) satisfy m-privacy, i.e. are 

m-private, with respect to a privacy constraint C, if and 

only if, provider. Thus, each data provider may be able 

to breach privacy of records provided by others. In our 

example from Table I, Ta* satisfies only 0-privacy 

w.r.t. C = k-anonymity ^ l-diversity (k = 3, l = 2), while 

Tb* satisfies 1-privacy w.r.t. 

The same C. m-Privacy is defined w.r.t. a privacy 

constraint C, and hence will inherit strengths and 

weaknesses of C. For example, if C is defined by k-

anonymity, then ensuring m-privacy w.r.t. C will not 

protect against homogeneity attacker de Finetti attack. 

However, m-privacy w.r.t. C will protect against a 

privacy attack issued by any m-adversary, if and only if, 

C protects against the same privacy attack by any 

external data recipient. M-Privacy constraint is 

orthogonal to the privacy constraint C being used. 

 

2.2 M-Privacy and Differential Privacy 

Differential privacy does not assume specific 

background knowledge and guarantees privacy even if 

an attacker knows all records except the victim record. 

Thus, any statistical data (or records synthesized from 

the statistical data) satisfying differential privacy also 

satisfies (n-1)-privacy, i.e. maximum level of m-

privacy, when any (n-1) providers can collude. While 

m-privacy w.r.t. any weak privacy notion does not 

guarantee unconditional privacy, it offers a practical 

trade off between preventing m-adversary attacks with 

bounded power m and the ability to publish generalized 

but truthful data records. In the rest of the paper, we 

will focus on checking and achieving m-privacy w.r.t. 

weak privacy constraints. 

 

3.    Monotonicity of Privacy Constraints 

Generalization based monotonicity has been defined for 

privacy constraints in the literature (Definition 2.2) and 

has been used for designing efficient generalization 

algorithms to satisfy a privacy constraint. In this paper 

we will refer to it as generalization monotonicity. 

Definition 2.2: Generalization Monotonicity of a 

Privacy Constraint A privacy constraint C is 

generalization monotonic if and only if for any set of 

anonymized records T* satisfying C, all its further 

generalizations satisfy C as well. Generalization 

monotonicity assumes that original records T have been 

already anonymized and uses them for further 

generalizations. In this paper, we also introduce more 

general, record-based definition of monotonicity in 

order to facilitate the analysis and design of efficient 

algorithms for checking m-privacy. 

EG monotonicity is more restrictive than 

generalization monotonicity. If a constraint is EG 

monotonic, it is also generalization monotonic. But vice 

versa does not always hold. K-Anonymity and l-

diversity that requires l distinct values of sensitive 

attribute in an equivalence group are examples of EG 

monotonic constraints, which are also generalization 

monotonic. Entropy l-diversity and t-closeness are 

examples of generalization monotonic constraints that 

are not EG monotonic at the same time. For example, 

consider a subset of two anonymized records with 2 

different sensitive values satisfying entropy l-diversity 

(l = 2), i.e. distribution of sensitive attribute values in 

the group is uniform. Entropy l-diversity is not EG 

monotonic because it will not hold if we add a record 

that will change the distribution of sensitive values (and 
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entropy) significantly. However, it is generalization 

monotonic because it will still hold if any other 

subgroup satisfying entropy l-diversity (l = 2) is added 

(generalized) into the first subgroup. 

 

Observation 2.2: If all constraints in a conjunction C = 

C1 ∧ C2 ∧ . . . ∧ Cw are EG monotonic, then the 

constraint C is EG monotonic. Similar observation 

holds for generalization monotonicity. In our example, 

C is defined as a conjunction of k-anonymity and l-

diversity. Since both of them are EG monotonic [9], C 

is EG monotonic. 

 

Theorem 2.1: m-Privacy with respect to a constraint C 

is EG monotonic if and only if C i s EG monotonic. 

Due to limited space, the proof of this theorem as been 

moved. 

 

Observation 2.3: If a constraint C is EG monotonic, 

then Α definition of m-privacy w.r.t. C(Definition 2.1) 

may be simplified. T ∗ 
=
 A (T) satisfies m-privacy w.r.t.  

C, if and only if,  

∀I ⊂ P, |I | = m, C is monotonic, C (A (T \TI)) = true 

 

Indeed, for an EG monotonic C , if a coalition I cannot 

breach privacy, then any sub-coalition with fewer 

records cannot do so either (Definition 2.3). 

Unfortunately, generalization monotonicity of C is not 

sufficient for the simplification presented in this 

observation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: M-Adversary space. 

 

 

Pruning Strategies 

The pruning strategies are possible thanks to the EG 

monotonicity of m-privacy (Observations 2.1, 2.3). If a 

coalition is not able to breach privacy, then all its sub- 

coalitions will not be able to do so and hence do not 

need to be checked (downward pruning). On the other 

hand, if a coalition is able to breach privacy, then all its 

super-coalitions will be able to do so and hence do not 

need to be checked (upward pruning). In fact, if a sub-

coalition of an m-adversary is able to breach privacy, 

then the upward pruning allows the algorithm to 

terminate immediately as the m-adversary will be able 

to breach privacy (early stop). Figure 3 illustrates the 

two pruning strategies where + represents a case when a 

coalition does not breach privacy and − otherwise. 

 

The Top-Down Algorithm 

 The top-down algorithm checks the coalitions in a top-

down fashion using downward pruning, starting from 

(nG − 1)-adversaries and moving down until a violation 

by an m-adversary is detected or all m-adversaries are 

pruned or checked. 

The Bottom-Up Algorithm 

The bottom-up algorithm checks coalitions in a bottom 

up fashion using upward pruning, starting from 0-

adversary and moving up until a violation by any 

adversary is detected (early-stop) or all m-adversaries 

are checked. 

The Binary Algorithm 

The binary algorithm, inspired by the binary search 

algorithm, checks coalitions between (nG − 1) - 

adversaries and m-adversaries and takes advantage of 

both upward and downward pruning (Figure 5, 

Algorithm 1). The goal of each iteration is to search for 

a pair Isub and Isuper, such that Isub is a direct sub-

coalition of Isuper and Isuper breaches privacy while 

Isub does not. Then Isub and all its sub-coalitions are 

pruned (downward pruning), 

 

 

 

 

 

 

 

 

 

 

Adaptive Selection of Algorithms 

Each of the above algorithms focuses on different 

search strategy, and hence utilizes different pruning. 

Which algorithm to use is largely dependent on the 
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characteristics of a given group of providers. 

Intuitively, the privacy fitness score (Equation 1), 

which quantifies the level of privacy fulfilment of 

records, may be used to select the most suitable 

verification algorithm. The higher the fitness score of 

attacked records, the more likely m-privacy will be 

satisfied, and hence a top-down algorithm with 

downward pruning will significantly reduce the number 

of adversary checks. We utilize such an adaptive 

strategy in the anonymization algorithm (discussed in 

the next section) and will experimentally compare and 

evaluate different algorithms in the experiment section. 

 

Adaptive m-privacy verification 

M-Privacy is then verified for all possible splitting 

points and only those satisfying M - privacy are added 

to a candidate set π
′
 (line 4). In order to minimize the 

time, our algorithm adaptively selects an m- privacy 

verification strategy using the fitness score of the 

partitions. Intuitively, in the early stage of the 

anonymization algorithm, the partitions are large and 

likely m-private. A top-down algorithm, which takes 

advantage of the downward pruning, may be used for 

fast verification. However, as the algorithm continues, 

the partitions become smaller, the down-ward pruning 

is less likely and the top-down algorithm will be less 

efficient. A binary algorithm or others may be used 

instead to allow upward pruning. We experimentally 

determine the threshold of privacy fitness score for 

selecting the best verification algorithm and verify the 

benefit of this strategy. Privacy Fitness Score Based 

Splitting Point Selection. Given a non-empty candidate 

set privacy fitness score (Definition 3.1) defined in the 

previous section and chooses the best splitting point 

(line 8). Intuitively, if the resulting partitions have 

higher fitness scores, they are more likely to satisfy m-

privacy with respect to the privacy constraint and allow 

for further splitting. We note that the fitness score does 

not have to be exactly the same function used for 

adaptive ordering in m-privacy check. For example, if 

we use Equation 1, the weight parameter used to 

balance fitness values of privacy constraints, should 

have, most likely, different value. The algorithm then 

splits the partition and runs recursively on each sub-

partition (line 9 and 10). 

 

 

B. m-Privacy Verification 

The objective of the first set of experiments is to 

evaluate the efficiency of different algorithms for m-

privacy verification given a set of records TG with 

respect to the previously defined privacy constraint C. 

Attack Power. In this experiment, we compared the 

different m-privacy verification heuristics against 

different attack powers. We used two different groups 

of records with relatively small and large average 

number of records per data provider, respectively. 

Figure 6 shows the runtime with varying m for different 

heuristics for the two groups. 

 

 

 

 

 

 

 

 

 

Name Description 
Verific

ation 

Anonym

ization 

    

α Weight paramter 0.3 0.8 

    

m Power of m-privacy 5 3 

    

n 
Total number of data 

providers 
– 10 

    

nG 
Number of data 

providers 
15 – 

 contributing to a group   

    

|T | 
Total number of 

records 
– 45,222 

    

|TG | 
Number of records in a 

group 

{150, 

750} 
– 

k 
Parameter of k-

anonymity 
50 30 

    

l 
Parameter of l-

diversity 
4 4 
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Number of Contributing Data Providers. In this 

experiment, we analyzed the impact of contributing 

data providers (nG) on the different algorithms for the 

small and large group respectively. Figure 7 shows the 

runtime of different heuristics with varying number of 

contributing data providers’ nG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Runtime (logarithmic scale) vs. number of 

data providers. 

 

This set of experiments compares our provider-aware 

algorithm with the baseline algorithm and evaluates the 

benefit of provider-aware partitioning as well as the 

adaptive m- privacy verification on utility of the data as 

well as efficiency. To evaluate the utility of the 

anonymized data, we used the query error metric 

similar to prior work (e.g. [18], [19]). 2,500 queries 

have been randomly generated and each query had qd 

predicates pi , defining a range of a randomly chosen 

quasi-identifier, where qd ∈ 
[
2, 

q
 

]
 and q is the number 

of quasi-identifier attributes. 

 

SELECT t FROM T* WHERE p1 AND . .  AND pqd ; 

Query error is defined as the difference in the results 

coming from anonymized and original data. Attack 

Power. We first evaluated and compared the two 

algorithms with varying attack power m. Figure 9 

shows the runtime with varying m for the two 

algorithms respectively. We observe that the provider-

aware algorithm significantly outperforms the baseline 

algorithm. This fact may look counter intuitive at the 

first glance – our algorithm considers one more 

candidate splitting point at each iteration, thus the 

execution time should be higher. However, in each 

iteration of the provider-aware algorithm, the additional 

splitting point along data providers, if chosen, reduces 

the number of providers represented in a subgroup and 

hence reduces m-privacy verification time significantly 

(as observed in Figure 7). In contrast, the baseline 

algorithm preserves the average number of providers in 

each subgroup, which incurs a high cost for m-privacy 

verification. As expected, both algorithms show a peak 

cost when m ≈ n/2. 

 

4. CONCLUSION 

In this paper, we considered a new type of potential 

attackers in collaborative data publishing a coalition of 

data providers, called m-adversary. To prevent privacy 

disclosure by any m-adversary we showed that 

guaranteeing m-privacy is enough. We presented 

heuristic algorithms exploiting equivalence group mono 

tonicity of privacy constraints and adaptive ordering 

techniques for efficiently checking m-privacy. We 

introduced also a provider-aware anonymization 

algorithm with adaptive m-privacy checking strategies 

to ensure high utility and m-privacy of anonymized 

data. Our experiments confirmed that our approach 

achieves better or comparable utility than existing 

algorithms while ensuring m-privacy efficiently. 

There are many remaining research questions. 

Defining as per privacy fitness score for different 

privacy constraints is one of them. It also remains a 

question to address and model the data knowledge of 

data providers when data are distributed in a vertical or 

ad-hoc fashion. It would be also interesting to verify if 

our methods can be adapted to other kinds of data such 

as set-valued data. 
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