
ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 42 Vol 2 Issue 3 MAR 2015/102

A HIGH THROUGHPUT FPGA BASED ARCHITECTURE FOR REAL TIME EDGE

AND CORNER DETECTION

1
A.Ramya,

2
L.Kalaiselvi

1
Resaerch Scholar, Department of ECE, Surya Engineering College, Erode, India

2
Assistant Professor, Department of ECE, Surya Engineering College, Erode, India.

1
rams1810@gmail.com,

2
kalaiselvi18@gmail.com.

Abstract: This paper proposes a new flexible parameterizable architecture for image and video processing with

reduced latency and memory requirements, supporting a variable input resolution. The proposed architecture is

optimized for feature detection, more specifically, the canny edge detector and the Harris corner detector. The

architecture contains neighborhood extractors and threshold operators that can be parameterized at runtime.

Also, algorithm simplifications are employed to reduce mathematical complexity, memory requirements, and

latency without losing reliability. Furthermore, we present the proposed architecture implementation on an

FPGA-based platform and its analogous optimized implementation on a GPU-based architecture for

comparison. A performance analysis of the FPGA and the GPU implementations, and an extra CPU reference

implementation, shows the competitive throughput of the proposed architecture even at a much lower clock

frequency than those of the GPU and the CPU. Also, the results show a clear advantage of the proposed

architecture in terms of power consumption and maintain a reliable performance with noisy images, low latency

and memory requirements.

Index Terms: Reconfigurable hardware, graphics processors, real-time systems, computer vision, edge and

feature detection.

1. INTRODUCTION

Feature detection algorithms, such as edge and corner

detection, are essential components of many

computer vision applications [1], e.g., image

segmentation, object recognition, and feature

tracking. The Canny edge detector and the Harris

corner detector are the most widely- used feature

detection algorithms due to their reliable performance

with noisy images. The computation- ally intensive

nature of these algorithms imposes high clock

frequencies and significant power consumption on

general microprocessor architectures, especially when

it is necessary to meet real-time constraints. Due to

their inherent parallelism, algorithms for image and

video processing are better performed on parallel

architectures, such as Field Programmable Gate

Arrays (FPGAs) and Graphics Processing Units

(GPUs). Starting with the graphic processing units,

these units present a massively parallel architecture

that consists of many processors. They have

dramatically evolved during the last decade and

hence achieve more computational power than

Central Processing Units (CPUs) [2]. This evolution

makes them highly attractive hardware platforms for

general purpose computation. For a better

exploitation of this high power, the GPU’s memory

bandwidth has also evolved significantly. Moreover,

the advent of GPGPU (General Purpose GPU)

languages makes it possible to exploit GPU for more

types of application and not only for image rendering

and video games. In this context, NVIDIA launched

the API CUDA (Compute Unified Device

Architecture) [3], a new programming approach

which exploits the unified design of the most current

graphics processing units from NVIDIA. Under

CUDA, GPUs consist of many processor cores which

can address GPU memories directly. This fact

permits a more flexible programming model than

previous ones [4]. As a result CUDA has rapidly

gained acceptance in domains where GPUs are used

to execute different intensive parallel applications.

FPGAs, on the other hand, are fine-grained recon-

figural architectures that can virtually perform any

processing operation at a hardware level, satisfying

real-time requirements of image and video processing

and off-loading these computing intensive tasks from

general microprocessors. However, the development

time needed to create a working hardware

implementation of an algorithm is longer and less

flexible than a software analogous implementation.

To come up with competitive implementations of both

the canny edge detector and the Harris corner detector

algorithms that satisfy real-time requirements, we

propose a new multi- resolution FPGA-based

architecture that supports runtime parameterizations

of its internal processing blocks We also propose an

optimized GPU implementation of those algorithms

in order to provide a comparison between these two

mailto:2kalaiselvi18@gmail.com

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 43 Vol 2 Issue 3 MAR 2015/102

approaches, analyzing their advantages and

drawbacks. With proper design constraints and

application-to-architecture mapping, we show how

FPGAs can be a suitable alternative to GPU- based

image and video processing units, both in terms of

flexibility and real-time performance. This is

especially valid when portability, low-latency and

power consumption are needed. This paper is an

updated extension of the work [5] in which only the

FPGA implementation was addressed. Also, the

present work Provides additional results obtained

with up-to-date FPGA- and GPU- based platforms.

The rest of this paper is organized as follows:

Section 2 presents the state-of-the-art and related

works on feature detection algorithms, specifically

edge and corner detection, and their implementations

on reconfigurable platforms. Section 3 gives a brief

overview of edge and corner detection and describes

the algorithms explored in this work. The GPU and

FPGA architectures and their implementations are

presented in Sections 4 and 5, respectively. Section 6

presents the analysis of results obtained with these

architectures. Finally, Section 7 gives the

conclusions of this work as well as the future

work perspectives

2. RELATED WORK STATE OF THE ART

This section is divided into two parts. The first part is

dedicated to the feature detection algorithms, more

specifically edge and corner detection, some

keywords, and the evaluation of several state of the

art techniques, at the origin of the algorithms studied

in this work. The second part presents some

important GPU implementations of feature

detection algorithms followed by a description of

FPGA-based architectures with the same objectives,

analyzing their positive and negative aspects and

comparing their achievements to our proposed

architecture.

2.1 Feature Detection Algorithms

Several techniques have been proposed for both

edge and corner detection. Regarding edge detection

algo- rithms, the works in [6] and [7] present a

comparison of several classical edge detection

techniques. Results show that the canny edge

detector, proposed in [8], has a better performance

than the other detectors in different scenarios.

Although the Canny approach is a well-known

technique with a good response to noisy images and

largely employed in recent applications as in [9]

and [10], new techniques have been explored

showing better performance. One example is the

global probability of boundary (gPb) proposed in

[11]. Regarding corner detection algorithms, the work

in [12] presents a comparison of classical techniques,

and according to the results presented, the Harris

corner detector, proposed by [13], has a better

performance than other detectors. As in the case of

Canny, the Harris technique is a well- known robust

solution for tracking interesting points in a video

stream. A recent work in [14] presents the state-of-

the- art of interest point detectors

describing new techniques with better performance

than Harris, e.g., the Fast Hessian [15]. In this work,

we chose to explore the widely-used Canny and

Harris detection algorithms due to their reliable

performance with noisy images.

2.2 Processing Architectures and

Implementations

Most of feature detection algorithms include sections

that consist of similar computation with pixels. This

fact means that these algorithms are appropriate for

acceleration on GPU by exploiting its processing

units in parallel.

In this context, [16] implemented several classic

image processing algorithms on GPU with CUDA

[3]. The OpenVIDIA project [17] has implemented

different com-puter vision algorithms running on

graphic hardware such as single or multiple graphic

processing units. In the medical imaging domain,

there are some GPU works for new volumetric

rendering algorithms [18] and Mag- netic Resonance

(MR) image reconstruction [19]. There are also

different works dealing with the exploitation of

hybrid platforms of multicore processors and GPUs.

OpenCL [20] proposed a framework for writing pro-

grams which execute across hybrid platforms

consisting of both CPUs and GPUs. The work of [21]

presented a flexible programming model for

multicore processors. In the same context, StarPU

[22] provided a unified runtime system for

heterogeneous multicore architectures permit-ting the

development of effective scheduling strategies

Regarding FPGAs, many recent works have

presented feature detector implementations in order

to meet real- time requirements as in [23], [24], [25],

and [26]. All these implementations have a fixed or

slightly configurable architecture, as in [26] which

presents an improved canny edge detector with a

self-adaptable threshold mechanism. Most of the

previously cited works are basically a cascaded set of

neighborhood operators that must be redesigned

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 44 Vol 2 Issue 3 MAR 2015/102

and resynthesized for every different algorithm or

frame resolution. This characteristic reduces the

system flexibility since they do not permit parame

terization at runtime. Our proposed architecture

reduces these limitations by using configurable

neighborhood extractors, as explained in Section 5.2.

In terms of processing performance, these

Implementations are, in the best of cases equivalent

to our architecture performance on a single pipeline

configuration. In [27] a distributed implementation

of the canny algorithm is presented with a

performance around 3.8 times faster than our

implementation. To achieve this, the input image is

split into 16 blocks and each block is handled by a

particular processing core. This solution requires

more resources and a simultaneous reading from 16

distinct regions of an image, which indicates that the

input image must be pre-buffered. In order to

minimize latency, our proposed architecture was

designed to process a flow of pixels without a pre-

buffering stage. Minimal latency is important in

applications that require a quick response from the

system when any change in the input occurs, e.g.,

vehicle obstacle detection and military targeting

systems. However, if the application permits a pre-

buffering stage, the main pipeline can be replicated to

simultaneously work in different pixel flows,

increasing the computing performance by a factor

equal to the number of pipelines. In this case, we

could achieve a computing performance similar to

[27] implementation with less than 4 pipelines. In

[28], two implementations of the same medical video

processing application are presented, one on GPU

and another on FPGA. It also presents an interesting

discussion about GPU vs. FPGA implementation

highlight -ing the fact that FPGA solutions can be

more compact and consume less power, if compared

to GPUs, at the cost of a high development time.

Another comparison of FPGA and GPU,

presented in [29], gives similar conclusions to [28],

adding that FPGAs are not recommended for

applications using datasets with a large fixed-point

representation is not suitable. On the other hand,

according to [29], GPUs are not suitable for

applications that require very short latency responses.

These conclusions agree with our proposal of low-

latency feature detection architecture.

3. EDGE AND CORNER DETECTION

Many computers vision applications use edge and

corner detectors as primary operators before high

level processing, such as object recognition and

tracking. For instance, the information associated to

the edges of an object in an image which is, in many

cases, sufficient to identify the object. In this section,

we will give an overview on these two components of

vision systems, showing their foundation and

describing the most common techniques of

implementation.

3.1 Edge Detection

Edges are defined as an image position where a

significant change in intensity values occurs [30].

Basically, if the brightness of a pixel has a significant

difference from pixels in its neighborhood, it may

contain an edge. In order to detect those changes, the

local gradient approximation of image function I (u,

v) is usually applied, which is the basis of many

traditional operators of edge-detection. The gradient

vector ∇I is composed of the first order partial

derivatives (1) of function I alongside its coordinate

axes (u, v).

∇I(u,v)= δI (u,v) δu

δI (u,v) δv

The magnitude of ∇I is

obtained

from (2)

∇I(u,v)= δI (u,v)2 + δI

(u,v)2

 δv

 δv

Some operators are commonly used for

approximating this gradient. Two examples of these

are the Sobel and Prewitt operators. They use linear

filters to obtain gradi- ents in each direction x and y.

Equations (3) and (4)

show the filter matrices Hx and Hy of these

two operators

 -1 0 1 -1 -2 -1

S | | s | |

Hx = -2 0 2 and Hy= 0 0 0 (3)

 -1 0 1 1 2 1

p | | p | |

Hx = -1 01 Hy = -1 -1 -1

 -1 0 1 0 0 0 (4)

 | | | |

 -1 0 -1 1 1 1

Applying these filters to an input image for either a

Sobel or a Prewitt operator results in two gradients

Gx and Gy, as shown in equations (5) and (6). Notice

that the function presents the convolution operator

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 45 Vol 2 Issue 3 MAR 2015/102

Gx (u, v) = Hx ⊗ I (u, v) (5)

Gy (u, v) = Hy ⊗ I (u, v) (6)

With these gradients, it is possible to obtain a

gradient magnitude that represents the local edge

strength |G| (7)

and the local edge orientation angle Φ (8).

((G(u,v))= (Gx (u, v)) ,(Gy (u, v)) (7)

Φ(u, v) = tan
−1

 Gy (u, v) (8)

 Gx (u, v)

More elaborate algorithms can be used in order to

enhance edge location. One of the most popular of

these algorithms is the Canny edge detector due to

its mini- mum number of false edge points, good

localization of edges, and single mark on each

edge [31].

Basically, the canny algorithm is composed of

three steps: smoothing, edge enhancement, and

localization. For the smoothing step, the canny

algorithm uses a Gaussian low pass filter to suppress

the noise of the input image. Next, in the edge

enhancement stage, it is necessary to calculate a

gradient vector at each pixel of the smoothed

image. For example it is possible to calculate the

gradient vector, magnitude and angle, by either

processing the Sobel or Prewitt operator, or simply

computing the local first norder derivatives along its

coordinate axes by the approximations (9) and

 (10).

Ix(u,v)= δI(u,v)~
f
 (u+1) -

f
 (u-1) (9)

 δx 2

Iy(u,v)= δI(u,v)~
f
 (v+1) -

f
 (v-1) (10)

 δy 2

It is also possible to combine the smoothing and edge

enhancement step in one single Step by convolving

the derivative of a Gaussian kernel the

localization step is divided into two stages: non-

maximum suppression and hysteresis thresholding.

The objective of the non-maximum suppression is to

eliminate non- ridge pixels giving a one pixel wide

aspect at the edges. A ridge pixel is defined as a pixel

with a gradient magnitude greater than that of the

adjacent pixels in the gradient direction. In the

hysteresis thresholding stage, two thresholds are used,

Tlow and Thigh . All pixels with a magnitude higher

than Thigh are considered true edges. Pixels with

magnitude between Tlow and Thigh are considered as

edge candidates. Pixels that do not satisfy these two

criteriaare suppressed. Edge candidates become true

edges if they are connected to true edges directly or

through other candidates. The values of Tlow and

Thigh depend on image characteristics, e.g.,

brightness and contrast, and have the same range of

pixel intensity, e.g., 0 to 255 in 8-bit gray scale.

Methodologies to determine the threshold values are

out of this paper’s scope and will be treated as values

specified by the user beforehand. For more

information regarding these methodologies, we refer

the readers to [1], [30], [31], and [32].

3.2 Corner Detection

A corner is defined as an area that exhibits a strong

gradient value in multiple directions at the same time

[31]. The Harris operator uses this premise to find

corners in an image. The first step is to obtain the

first partial derivative of the image function I (u, v) in

directions, horizontal and vertical, based on the

approximations (9) and (10). With the values of Ix

and Iy , it is possible to calculate the elements of the

matrix M, described in (11), using (12), (13), and

(14).

M= A C

 C B (11)

A=I
2
x ⊗ ω (12)

B=I
2
 y ⊗ ω (13)

C=(Ix Iy) ⊗ ω (14)

where ω is a smoothing circular operator, e.g., a

Gaussian filter. The final step is to obtain the Harris

operator response R as in (15).

R = Det[M] − k · Tr
2
 [M] (15)

where R is positive in corner regions, negative in

edge regions, and is very small in flat regions,

and k is a coefficient that, in practice, is a fixed

value in the range of 0.04 to 0.06. This step can also

be obtained by analyzing the eigenvalues of the

matrix M.

4. GPU ARCHITECTURE AND

IMPLEMENTATION

Feature detection algorithms are excellent

candidates for acceleration on GPU since they consist

mainly of common computation over many pixels.

This fact is due to the exploitation of the high number

of GPU computing units in parallel. Thus, we can

say that graphic cards present an efficient tool for

boosting the performance of image processing

techniques. This section is presented in two parts:

The first describes our proposed development scheme

for image processing on GPU, based upon CUDA

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 46 Vol 2 Issue 3 MAR 2015/102

for parallel constructs and OpenGL for visualization.

The second part is devoted to the presentation of

the GPU implementation of edge and corner detection

methods based on the canny and Harris techniques

respectively.

4.1 Proposed scheme for image processing on GPU

We propose in this section a development scheme for

image processing on GPU, making it possible to load,

treat and display images on graphic cards. This

scheme is based upon CUDA for parallel constructs

and Open GL for visualization, which reduces data

transfer between the device and host memories.

It is based on three steps as illustrated in Fig. 1:

1) Input data loading: This step loads the input

data (images) from host (CPU) to device (GPU)

memory which makes it possible to apply GPU

treatments on the copied image

2) CUDA parallel processing: This step has two main

stages: Threads allocation: Once the input data are

loaded on the GPU memory, the number of threads

in the GPU grid has to be selected, so that each

thread can perform its processing on one or a group

of pixels. This enables threads to treat pixels in

parallel Note that the number of threads depends on

the number of pixels in the input image. CUDA

processing: The CUDA functions (kernels) are

executed using the number of threads selected in the

previous step.

3) Output results: After processing, results can be

presented using two different scenarios:

• Open GL visualization: The graphic library

OpenGL is used for displaying the output images

quickly, since it exploits buffers that already exist on

GPU. Indeed, this avoids more data transfer between

host and device memories. This scenario is useful

when parallel processing is applied on a single image

only since we cannot display many images using one

video output (one GPU disposes of one video output).

Transfer of results: OpenGL visualization becomes

impossible in the case of multiple images processing

using one video output only. In this case, the transfer

of output images from the GPU to the CPU memory

is required. This transfer time presents an additional

cost for the application for an optimized utilization of

graphic processors; we propose to exploit the GPU’s

texture and shared memories. Hence, we loaded the

input image on the GPU’s texture memory for a fast

access to pixels. We have also loaded each

neighboring pixel onto the GPU’s shared memory for

a faster processing of the image’s pixels using their

neighbors’ values

Figure 1: Image processing on GPU based upon

CUDA and OpenGL.

Based on the scheme described above, we propose

the GPU implementation of edges and corners

detection methods, enabling both efficient results in

terms of the quality of detected edges and corners,

and improved performance thanks to the exploitation

of GPU’s computing units in parallel.

4.2 Edge detection on GPUs

This section describes the GPU implementation of

the edge detection step based on a recursive

algorithm using the Canny-Deriche design [33].

Noise truncate immunity and the reduced number of

required operations make this method very efficient.

This technique is based on four principle steps

1) Recursive gradient computation (Gx,Gy).

2) Gradient magnitude and direction

computation.

3) Non-maximum suppression.

4) Hysteresis thresholding.

Notice that the recursive gradient computation step

applies a Gaussian smoothing before filtering the

image recursively using two Sobel filters in order to

compute the gradients Gx and Gy. Within the steps of

gradient magnitude and direction computation, the

non- maximum suppression and hysteresis occur thus

representing the same steps used for the canny filter

described in the previous section.

The proposed GPU implementation of this recursive

method is based on the parallelization of all

computation steps on GPU. Below, we describe the

implementation and the steps as presented in Fig. 2.

Recursive Gaussian smoothing: The GPU

implementation of the recursive Gaussian smoothing

Step is developed using the CUDA Software

Development Kit (SDK) individual sample package

[34]. This parallel implementation is applied on the

Deriche recursive method [33]. The advantage of this

method is that the execution time is independent of

the filter width. The use of this technique for

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 47 Vol 2 Issue 3 MAR 2015/102

smoothing permits a better noise truncate immunity.

Sobel filtering: The recursive GPU implementation

of this step is also provided from the CUDA SDK

individual sample package [34]. This parallel

implementation exploits both shared and texture

memories which leads to a boosting of the

performance.

Gradient magnitude and direction computing:

Once the horizontal and vertical gradients (Gx and Gy

) have been computed, we calculate the gradient

magnitude (intensity) using equation (7) and the

gradient direction

Figure 2: GPU implementation of Canny-Deriche

Edge detector using equation (8). The CUDA

implementation of this step is applied in parallel

on image pixels, using a GPU grid computing

containing a number of threads equal to the

number of pixels in the image. For example,

480,000 threads would be required for an 800×600

image resolution. Thus, each thread calculates the

gradient magnitude and direction of one pixel of the

image.

Non-maximum suppression: After computing the

gradient magnitude and direction, we apply a CUDA

function (kernel) which enumerates the local

maximum, which are pixels with high gradient

intensity. We pro- pose to load the values of neighbor

pixels (left, right, top, and bottom) in shared

memory since these values are required for the

search for the local maximum. The number of

selected threads for parallelizing this step was also

equal to the number of pixels in the image.

Hysteresis thresholding: Hysteresis presents the

final step of edge production. The GPU

implementation of this step can be presented in

two phases. The first one consists of selecting threads

with a number equal tothe number of image pixels.

Each thread checks if its corresponding pixel has a

gradient value greater than Thigh. This pixel will be

marked as an edge point. Then, for the second

phase, each block of threads will treat one marked

edge point and its eight neighbors (connected pixels).

These pixels are loaded on the shared memory in

order to have a fast access to their values. Each

connected pixel will be marked as an edge point if

its gradient intensity is greater than the low

threshold Tlow .

Figure 3: GPU implementation of the Harris

corner detector.

4.3 Corner detection on GPUs

We developed the GPU implementation of

Bouguet’s corners extraction method [35], based

on the Harris detector [13]. This\ method is proven

to be efficient thanks to its invariance to rotation,

scale, brightness, and noise. Our GPU

implementation of this method is based on

parallelizing its five steps on GPU as shown in Fig. 3.

Spatial derivatives computation: The first step

consist on computing the matrix G of spatial

derivatives for each pixel using equation (16).).

This matrix of 4 elements (2×2) is calculated with the

spatial derivatives Ix and Iy which are computed

using the equations(9) and (10) respectively.

 I
2
x Ix Iy

 G= (16)

 Ix Iy I
2
y

The GPU implementation applies a parallel treatment

of pixels using a GPU grid which contains a

number of threads equals to the number of pixels.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 48 Vol 2 Issue 3 MAR 2015/102

The values of neighbors’ pixels (left, right, top, and

bottom) of each image point are loaded in the GPU

shared memory since these values (neighbors) are

required for computing the spatial derivatives. Each

thread computes the spatial derivatives of one pixel.

Then, each thread can calculate the elements of the

matrix G.

Eigenvalues computation: Based on the matrix G,

we calculate the two eigenvalues of each pixel. Then,

we keep the highest eigenvalue for each pixel. The

GPU implementation of this step is performed by

computing these eigenvalues in parallel over image

pixels. In this case, we have also used a GPU grid

which contains a number of threads equals to the

number of pixels.

Figure 4: Functional blocks of the proposed

architecture

Maximum eigenvalue selection: Once the

eigenvalues are calculated, we extract the maximum

value. This value is computed on GPU using the

library CUBLAS [36].

Removing of small eigenvalues: The research of

eigenvalues is performed such that each GPU thread

compares the eigenvalue of its corresponding pixel

with the maximum eigenvalue. If this value is lower

than 5% of the maximum value, the pixel will be

excluded.

Selection of best values: The last step enables, for

each image area, the extraction of the pixel with

the highest eigenvalue. For GPU implementation, we

create a GPU thread for each group of 10×10 pixels.

Each thread allows the detection of the maximum

eigenvalue in a region using the CUBLAS library.

The pixels with these extracted values represent the

detected corners. For more details about this

implementation, we refer the readers to [37] and [38].

5. FPGA ARCHITECTURE AND

IMPLEMENTATION

The proposed architecture processes a streamed

image or sequence of images with variable

resolutions. The frame resolution can be detected

directly from the header of images files or it

can be manually configured by the user. In both

cases, this information adapts the whole

architecture on-the-fly. Fig. 4 shows the functional

blocks of the main architecture for both the Canny

and Harris detectors. The proposed Architecture can

work as an accelerator for image processing where

the Frame Source and Frame Sink are the interface

between the host computing system and the

architecture, e.g., PCIe or Gigabit Ethernet. In a

different operating mode, it can work as a stand-

alone image processor placed directly on a pixel

stream, e.g., embedded in a camera system.

This section is divided into four parts where the first

two parts are dedicated to the main components

of the proposed architecture, the System Controller

and the Neighborhood Extractor (NE). The last two

parts describe the computational blocks used to

implement the Canny and Harris detectors.

Figure 5: Architecture of the System Controller

block

5.1 System Controller

The System Controller, shown in Fig. 5, is composed

of two main blocks, the Header Register and the

Data Counter. These blocks operate in two different

modes ac- cording to the user input signal header en.

This signal indicates if the data input is a single

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 49 Vol 2 Issue 3 MAR 2015/102

image (header en = 1) or an image sequence (header

en = 0). If the data input is a single image the Header

Register can extract image characteristics directly

from the file’s header.

The Width (W) and Height (H) characteristics are

sent to the Processing Pipeline in order to configure

the line registers, which are image width dependent.

The Data Counter examines the current position of

the stream in order to generate two signals are

transferred to the output (Frame Sink) without

traversing the Processing Pipeline. In the case of an

image sequence, the Header Register and the Data

Counter blocks are disabled and the user

configuration is transferred di- rectly to the

Processing Pipeline. The System Controller only

supports non-compressed image and video formats,

more specifically, bitmap (BMP) images on single

image processing mode and regular progressive

raster scanned video stream on image sequence

mode.

When the proposed architecture is operating on

single image mode, it must process one image

completely before starting to process a new one.

This approach allows it to process a sequence of

images with different sizes since every new image

can readjust the architecture parameters without

interfering with the previous image processed.

However, if all the input images have a known

and fixed size, the image sequence mode can be

used to reduce idle resources and latency. In this

mode, the architecture processes all input images in a

sequence, keeping the processing pipeline full all the

time.

5.2 Neighborhood Extractor

The NE block provides a sliding window with a fixed

dimension (w × h) to the subsequent processing block

Figure 6: A 3×3 sliding window where the

valisscaning positions are the gray pixels in the

input image.

It was designed to support images with variable

resolution and automatically handle the image

borders, keeping a reduced memory requirement

and minimizing the latency. In order to simplify the

description of the NE operation, the smallest version

in the proposed system, a 3×3 NE window, will be

used as a reference. As an illustration, Fig. 6 presents

3×3 NE window characteristics where the window

scans the whole image following the image

coordinates that go from (0, 0) at the origin to(W-

1,H-1)

A characteristic problem that concerns

neighborhood computations is the border problem

illustrated in Fig. 6. It occurs because a

neighborhood can only be processed if it fits wholly

within the image, resulting in a smaller image. To

solve this problem, we have added a padding

mechanism that extends the image boundaries by

repli- cating, or clamping, the pixels at the image

limits.

The basic structure of the NE is a set of

cascaded line buffers connected to register arrays

from where it is possible to read the current and two

or more previously stored pixels. Fig. 7 shows the

proposed 3×3 NE block architecture functional blocks

and Fig. 8 presents the register array architecture. A

secondary structure is responsible for processing the

image borders. This structure is based on the

Coordinate Counter (Fig. 7) Which Provides? The

input coordinates to the mechanism selecting the

output according to the window position. A

variation of the NE is used in the Canny

detector’s hysteresis stage, where the input of last

line buffer (line buffer is connected to the output

of the connector block (Fig. 10), allowing it to reuse

its own output as part of its Neighborhood input.

This recursive behavior improves the hysteresis’

performance in a one-pass image scan.

The Line Buffer is shown in Fig. 9. Based on the

image width and window position, the Line Buffer

Controller generates the write and read addresses,

WR ADD and RD ADD respectively, for a dual-port

on-chip RAM block with a size of 4096 Bytes.

This configuration has the advantage of supporting

different image resolutions without requiring are

synthesis process.

Indeed, the System Controller (Fig. 5) can reprogram

the Line Buffer Controller on the fly when a new

image with a different resolution arrives or it can

be done manually by the user. The maximum

resolution supported by the NE isWm ×Hm pixels,

where W is limited by the on-chip RAMblock size,

4096 pixels in this case, and H depends on the

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 50 Vol 2 Issue 3 MAR 2015/102

size of a System Controller internal register, which

is fixed to 12 bits, addressing up to 4096 pixels

(2
12

).

Figure 7: The 3×3 NE architecture

Figure 8: The register array architecture

Figure 9: The line buffer architecture

In terms of latency, the NE block minimizes the

required number of buffered pixels. Considering

that the window size is w × h, the latency in pixels

of the NE block can be calculated by (17).

 w – 1 h - 1

NElatency= +W

For different window sizes, the NE only differs

in the number of line buffers, the size of the

register array and the complexity of the image

border handler that must include the extra elements

in the window.

5.3 Canny

Detector

The Canny detector processing pipeline follows the

original Canny algorithm with some modifications

to simplify mathematical operations, optimizing

performance and utilization of resources.

Fig. 10 shows the functional diagram of the canny

edge detector processing pipeline. Below, we

describe all the steps along the pipeline

Color to grayscale: The first step in the FPGA

implementation of the Canny edge detector is a

conversion from 24-bit RGB color standard into

gray scale where each pixel n is n represented by 8-

bit samples carrying the pixel’s intensity. This step

is performed by the C2BW block which computes the

average intensity of the three colors (red, green, and

blue) in each input pixel.

Gaussian smoothing: The smoothing stage is based

on a Gaussian low-pass filter. The Gaussian filter

requires a 5×5 pixels window provided by an NE

block and is computed based on a fully parallelized

linear filter operator defined in (18). This operator

firstly multiplies all the elements of the input

window by the corresponding kernel coefficients

(Fig. 11). Then, these intermediate results are

summed up in an adder tree. Finally, the total is

divided by normalization factor.

g(u, v) = f (u + i, v + j) · h(i, j) (18)

Where g(u, v) is the resulting image, f (u, v) is

the input image, and h(i, j) is the kernel.

Sobel filtering: The edge enhancement is made by

processing the Sobel operators defined in (3).

In this step, a single 3×3 NE block is necessary

and the computation is similar to the Gaussian

filter, based on linear filtering. The two Sobel

kernels work in parallel processing the gradients Gx

and Gy .

Magnitude & Direction: The magnitude and

direction equations, defined in (7) and (8), are quite

expensive to implement on hardware. To avoid

these complex computation tasks, we implemented

the approximation solutions proposed in [7]. These

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 51 Vol 2 Issue 3 MAR 2015/102

solutions are defined in (19) and (20).

|G| ≈ |Gy | + |Gx | (19)

 90
o
 |Gy|>|Gx|

Φ≈ (20)

 0
o
 |Gy|>|Gx|

Non-maximum suppression: The Non-Maximum

Suppression (NMS) step eliminates pixels with

gradient magnitude smaller than adjacent pixels in the

gradient direction. Fig. 12 shows the NMS hardware

architecture.

Hysteresis thresholding: The final step is the

hysteresis thresholding where two different

thresholds Thigh and Tlow are applied to the input

image Thigh saturates every pixel with a gradient

value greater than its threshold value. Tlow bypasses

every pixel with a gradient value greater than its

threshold value. The output of these two blocks are

added up, resulting in a stream where the saturated

pixels are considered part of the edges and the other

pixels different than zero are considered edge

candidates. Then, a sequence of operators test all

pixels within the image to determine if edge

candidates are connected to edge pixels for reducing

the fragmentation of contours in the edge map. The

connector blocks test if at least one of the eight

neighborhood pixels of an edge candidate is a true

edge. If the test is positive, the edge candidate is

marked as a true edge. To improve the efficiency of

this test, the connector blocks

Figure 10: Functional diagram of the canny edge

detector processing pipeline where the latency is

indicated on the top of each stage and W is the

number of pixels per image line.

Figure 11: Kernel coefficients of the Gaussian

filter with the origin coordinates (i, j) at the

central pixel.

Figure 12: Non-maximum suppression hardware

architecture.

Utilize recursive NEs, as described in Section

5.2, and mirror blocks to invert the image scanning

direction. The mirror blocks allow edge candidates to

be tested in both directions, right-to-left and left-to-

right. Similarly to the NE block, the mirror block

was de- signed to support images with variable

resolutions. The architecture of the mirror block,

shown in Fig. 13, is similar to the line buffer

architecture (Fig.9). The main difference is that the

 mirror block has two RAM blocks. While one

RAM block is storing the current input line, the other

outputs the previous line in a last-in-first- out (LIFO)

fashion. When the line is finished, the RAM blocks

change their roles and the process starts again. The

Mirror Controller generates all the controlling

signals, including the read and writes addresses for

both RAM blocks. In terms of latency, the Mirror

block minimizes the number of pixels buffered before

it starts sending its results. The latency in pixels of

the Mirror block is equivalent to one image line size

(W).

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 52 Vol 2 Issue 3 MAR 2015/102

Figure 13: Architecture of the mirror block

5.4 Harris Detector

The Harris corner detector processing pipeline,

shown in Fig. 14, is based on the original Harris

algorithm presented in Section 3.2. Below, we

present the FPGA implementation of this algorithm,

divided into five steps.

Color to gray scale: The first step of this

implementation is identical to the one presented in

the previous section for the Canny implementation.

Spatial derivative computation: This step

computes the first derivatives Ix (u, v) and Iy (u, v)

of the input image f (u, v) by applying the

approximations presented in (9) and (10).

Building the matrix M: In this step, the values

A, B, and C , defined in (12), (13), and (14), are

computed to build the matrix M, defined in (11).

Three sub-pipelines are applied in parallel to perform

these computations.

Each sub-pipeline is formed by a multiplier, a 5×5

NE block, and a Gaussian filters.

Harris response: The Harris response operator

computes the values of R, defined in (15). To

keep the pixel stream within an 8-bit resolution

without losing weak corner values, R is truncated at

255. This approach can create large regions around

the corner spot with saturated values, making

difficult the following NMS process.

To solve this, a threshold block eliminates low R

values that do not represent corners followed by

an extra Gaussian filter to blur these saturated

regions, producing a maximum spot at the center

of these regions.

Non-maximum suppression: The final step is to

select

Figure 14: Functional diagram of the Harris

corner pixels is indicated on the top of each stage

and detector processing pipeline where the latency

in W is the number of pixels per image line.

6. RESULTS AND ANALYSIS

Figure 15: Simplified functional diagram of the

proposed architecture evaluation system.

The best values representing corners. To do NMS

block analyses a region (window) and maximum

value as a detected corner In order to evaluate the

proposed architecture we have implemented it in

the Altera development board DE2-115 containing

a Cyclone IV EP4CE115 FPGA device along with

a digital camera daughter board D5M. The

complete system works as A stand-alone 480

kpixel digital camera where the proposed

architecture is embedded, working on image

sequence mode.

 Diagram of the complete system where a

Circular buffer is placed between the this, a 9×9

and filter (RAW to RGB converter) marks the

architecture (Canny/Harris Proposed detectors) in

order to detach the frame rate from the input

frame rate.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 53 Vol 2 Issue 3 MAR 2015/102

In terms of latency, we can define two types of

latency, the Initial Latency (IL) and the

Processing Latency (PL). The IL is defined

here as the amount of time between when the

first pixel arrives at the input of the system and

when it is received at the system’s output, i.e.,

it corresponds to the time expended to fill the

pipeline. The PL is defined here as the sum of the IL

and the time to process all the pixels of an image.

Since our proposed architecture works at the same

 pixel rate as the input pixel stream and

considering that the input pixel stream has a

constant rate, we can express IL and IP in terms of

pixels, as shown in Fig. 10 and Fig. 14. Based

on these

TABLE 1: Canny edge detector timing

performance

Image resolution CPU GPU FPGA
a

(W × H) (ms) (ms) (ms)

512×512 30 2.11 1.10

1024×102

4 101 6.08 4.37

1476×168

0 267 13.90

10.3

1

3936×393

6 1497 59.94

64.1

6

\

A FPGA working at 242 MHz (Fmax) definitions,

we can write equations (21) and (22).

TABLE 2: Harris corner detector timing

performance

Image

resolution

CP

U GPU FPGA

 (W × H) (ms) (ms) (ms)

 512×512 20 2.32 1.15

 1024×1024 60 4.49 4.56

 1476×1680 171 13.1 10.75

 6

 3936×3936

140

2 64.41 66.93

P LCanny = W × H + (37 + 8W) (21)

P LHarris = W × H + (53 + 9W) (22)

Where W × H is the dimensions of the image and the

expression within parentheses is the IL. The

processing time can be obtained by dividing PL by

the pixel rate. Timing performance comparisons

between three different platforms are shown in

Table 1 for the canny edge detector and Table 2 for

the Harris corner detection. In order to provide

results from a more up-to-date tech- nology than

the 60 nm Cyclone IV, we have synthesized both

Canny and Harris detectors targeting the 28 nm

Arria V 5AGXFB3 FPGA device, which is part of

the latest midrange FPGA family from Altera. The

other platforms utilized are: a CPU Intel Core2 Duo

E6600, 2.4 GHz; and a GPU GeForce GTX 580, 1.54

GHz. In this analysis, the frequency of the FPGA

implementation is the maximum frequency (Fmax)

obtained during synthesis using the tool Quartus II

v12.1. Tables 1 and 2 show that the FPGA has an

evident advantage over the CPU implementation. The

FPGA speedup factor for the CPU implementation

varies from

TABLE 3: Comparison of power and energy

consumption for the canny edge detector

implementations

Image

CP

U

GP

U FPGA

resolution

(WxH) (W) (J) (W) (J) (W) (mJ)

Standoff 136 - 229 - 0.9 -

512X512 141 4.2 231 0.5 1.5 1.6

1024x102

4 147 14.8 244 1.5 1.5 6.4

1476x168

0 149 39.8 248 3.4 1.5 15.0

3936x393

6 153 229.0 251 15.0 1.5 93.6

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 54 Vol 2 Issue 3 MAR 2015/102

23.1 to 27.2 with the canny algorithm, and from 13.2

to 20.9 with the Harris algorithm. Regarding the GPU

implementation, the FPGA presented an advantage

on 512×512, 1024×1024, and 1476×1680. For

larger images however, the GPU has an increasingly

better performance in function of the image

resolution, while the FPGA has a constant

performance. This advantage of the GPU in terms

of is due to its high number of CUDA cores (512

in a GeForce GTX 580). Indeed, the use of high

definition images enables more CUDA threads to be

launched so that each one can treat one or a group of

pixels, which offers a massively parallel processing.

Moreover, the treatment of large images enables the

use of GPU to be increased at the expenses of

data transfers between CPU and GPU

memories. An efficient exploitation of GPU requires

the application of a highly intensive processing (in

parallel) of large datasets (im- ages). The treatment of

low resolution images on GPU is hampered by the

cost of data transfers between CPU and GPU

memories. These costs can be neglected when

processing high definition images since the

treatment will be accelerated by launching many

CUDA threads in parallel.

In addition to its competitive performance, the FPGA

implementation can still offer portability and much

lower power consumption when compared to GPUs

and CPUs, as we can see in Tables 3 and 4. Although

both FPGA implementations perform the same

computations as the concurrent architectures, the

FPGA solutions consume from 94 to 151 times

less power than the CPU implementation and

from 154 to 254 times less power than the GPU

implementation. In terms of energy efficiency, the

figures are even better compared with competitive

architectures. The FPGA implementations are from

1316 to 2652 times more efficient than the CPU

solution and from 161 to 315 times more

efficient than the GPU solution. It is also

important to highlight here that the GPU, despite

being more power consuming than the CPU, it is

more energy efficient than the CPU due to its

higher performance. Regarding resource utilization,

the FPGA Canny de- tector version occupies only 3

% of the Arria V 5AGXFB3 resources and the Harris

detector occupies 7 %, as de- scribed in Table 5 The

proposed Canny and Harris detectors were also

TABLE 4: Comparison of power and energy

consumption for the Harris corner detector

implementations

Image

CP

U GPU FPGA

resolution

(WxH) (W) (J) (W) (J) (W) (mJ)

Standoff 136 - 229 - 1.1 -

512X512 141 2.8 231 0.5 1.5 1.7

1024x1024 147 8.8 240 1.1 1.5 6.7

1476x1680 147 25.1 242 3.2 1.5 15.8

3936x3936 152 213.1 249 16.0 1.5 98.2

TABLE 5: FPGA resources utilization in the

Canny edge detector and Harris corner detector

implementations. The numbers within parentheses

correspond to the percentage of use in the Arria V

5AGXFB3.

Memory Algorithm ALM
a
 Register (kb) DSP

Blocks Canny ED 3406 (2) 6608

 533 (3) 28 (3) Harris CD 8624 (6)

 17137 863 (5) 76 (7)

 Adaptive Logic Modules. Evaluated in terms of

efficiency and noise tolerance. In these tests, different

levels of Gaussian noise were added to the original

image. Fig 1shows the proposed canny edge detector

results in an image degraded by Gaussian noise. In

this figure, the images of the edges were inverted for

better visualization.

Thgraph in Fig 17 compares our results and the

results of a Canny detector provided as a plugin of

the ImageJ tool [39], called Feature J [40]. These

results show that the proposed canny detector has a

similar response to the analogous implementation in

software, demonstrating the efficiency of the

architecture despite the algorithmic simplifications.

Results also show that our system can eliably

detect edges in noise degraded images down to

20 dB of SNR, where many false edges start

appearing.

The same idea of comparing SNR degraded image

resolutions was used to test the Harris corner detector.

Instead of computing the SNR of the output image

with corner detection, the number of corners detected

was analyzed and compared to the number of corners

detected in the original image. Fig. 18 shows the

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 55 Vol 2 Issue 3 MAR 2015/102

Harris corner detector results on an image degraded

by additive Gaussian noise. The graph in Fig. 19

shows the relation between the number of corners

detected and the image degradation level. We can see

that Corner detector has a reasonable number of

corners detected in images de- graded down to 30 dB

SNR. After this point, the number of false positive

corners increases significantly.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new flexible

architecture for Canny and Harris feature detectors.

This new

 (a) (b)

 (c) (d)

Figure 16: Canny edge detector results in an

image de- graded by Gaussian noise. (a) Original

image; (b) edges detected in (a); (c) noise-

degraded image (SNR = 20 dB); (d) edges detected

in (c)

Figure 17: Edge detection degradation levels vs.

Input image degradation levels.

Architecture has a reduced latency and memory

requirement supporting images with variable

resolutions. The key component in this architecture

is the NE that can be parameterized on-the-fly

based on the image characteristics. Some

simplifications in the algorithms that reduce

mathematical complexity, latency, and Memory

requirements are also presented in this paper.

The proposed architecture was evaluated on an

FPGA- based platform and the results have shown the

efficiency of the NE block and the algorithm

simplifications that

(a) (b)

 (c) (d)

Figure 18: Harris corner detector results on an

image de- graded by Gaussian noise.(a) original

image(detail); (b) corners detected in (a); (c)

noise-degraded image (SNR = 30 dB); (d) corners

detected in (c).

Figure 19: Number of corners detected vs.

Image degradation levels.

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and

ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 56 Vol 2 Issue 3 MAR 2015/102

Did not significantly change the algorithm’s

reliability. The results have also shown that the

proposed architecture presented a very competitive

performance com- pared with the analogous

implementation in a GPU. The FPGA implementation

can deliver a maximum through put of 242 Mpixel/s

and 232 Mpixel/s in the Canny and Harris detectors

implementation, respectively. This performance is

sufficient to support high definition (HD) formats,

including Full HD streams in a 1080p60 format

(resolution of 1920×1080 pixels at a rate of 60

progressive frames per second). Furthermore, it has a

clear advantage in applications where low power

consumption, low latency, and portability are

required.

Future work will be devoted to increasing the

flexibility level of the architecture including a

reconfigurable interconnection between the building

blocks in such a way that several different processing

pipelines can be created at runtime. In this way, a

single architecture can be used for a wide range

of image and video processing algorithms. An

extension of this work will be the design of a

mapping method to try to reduce the application

development time. Another extension will be the

addition of a histogram analysis module to

automatically adjust threshold levels and/or input

image equalization Histogram analysis demands at

least one pre-scan on the input image which could

significantly increase the latency of the system.

However, considering that in video processing the

input context will not drastically change between

two consecutive frames, it is possible to use the

histogram analysis of one frame to adjust the

architecture for the next frame, without

increasing the latency.

ACKNOWLEDGMENTS

This work is supported by the French Community of

Belgium under the Research Action ARC-OLIMP

(Optimization for Live Interactive Multimedia

Processing (2003-13)

REFERENCES

[1] R. Maini and H. Aggarwal, Study and

comparison of various image edge

detection techniques,‖ International Journal of

Image Processing (IJIP), vol. 3, no. 1, pp. 1–12,

2009.

[2] C. Harris and M. Stephens, ―A combined

corner and edge detec- tion,‖ in Proceedings of

The Fourth Alvey Vision Conference, 1988, pp.

147–151.

[3] S. Gauglitz, T. Hllerer, and M. Turk,

―Evaluation of interest point detectors and

feature descriptors for visual tracking,‖

International Journal of Computer Vision, vol.

94, no. 3, pp. 335– 360, Mar. 2011.

[3] J. Fung, S. Mann, and C. Aimone,

OpenVIDIA: Parallel GPU computer vision,‖ In

Proc of ACM Multimedia, pp. 849–852, 2005.

[5] Khronos-Group, ―The open standard for

parallel programming of heterogeneous

systems, ‖ 2009. [Online]. Available: http:

//www.khronos.org/opencl

[6] W. He and K. Yuan, An improved Canny

edge detector and its realization on FPGA,‖ in

Intelligent Control and Automation, 2008.

WCICA 2008. 7th World Congress on, june

2008, pp. 6561 –6564.

[7] Q. Xu, C. Chakrabarti, and L. J. Karam, ―A

distributed Canny edge detector and its

implementation on FPGA,‖ in Digital Signal

Processing Workshop and IEEE Signal

Processing Education Workshop (DSP/SPE),

2011 IEEE. IEEE, Jan. 2011, pp. 500–505.

[8] K. Pauwels, M. Tomasi, J. Diaz Alonso, E.

Ros, and M. Van Hulle, A comparison of

FPGA and GPU for real- time phase-based

optical flow, stereo, and local image

features,‖ Computers, IEEE Transactions on,

vol. 61, no. 7, pp. 999 – 1012, july 2012.

http://www.khronos.org/opencl
http://www.khronos.org/opencl

