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Abstract: This paper proposes a new flexible parameterizable architecture for image and video processing with 

reduced latency and memory requirements, supporting a variable input resolution. The proposed architecture is 

optimized for feature detection, more specifically, the canny edge detector and the Harris corner detector. The 

architecture contains neighborhood extractors and threshold operators that can be parameterized at runtime. 

Also, algorithm simplifications are employed to reduce mathematical complexity, memory requirements, and 

latency without losing reliability. Furthermore, we present the proposed architecture implementation on an 

FPGA-based platform and its analogous optimized implementation on a GPU-based architecture for 

comparison. A performance analysis of the FPGA and the GPU implementations, and an extra CPU reference 

implementation, shows the competitive throughput of the proposed architecture even at a much lower clock 

frequency than those of the GPU and the CPU. Also, the results show a clear advantage of the proposed 

architecture in terms of power consumption and maintain a reliable performance with noisy images, low latency 

and memory requirements. 

 

Index Terms: Reconfigurable hardware, graphics processors, real-time systems, computer vision, edge and 

feature detection. 

1. INTRODUCTION  

Feature detection algorithms, such as edge and corner 

detection, are essential components of many 

computer vision applications [1], e.g., image 

segmentation, object recognition, and feature 

tracking. The Canny edge detector and the Harris 

corner detector are the most widely- used feature 

detection algorithms due to their reliable performance 

with noisy images.  The computation- ally intensive 

nature of these algorithms imposes high clock 

frequencies and significant power consumption on 

general microprocessor architectures, especially when 

it is necessary to meet real-time constraints. Due to 

their inherent parallelism, algorithms for image and 

video processing are better performed on parallel 

architectures, such as Field Programmable Gate 

Arrays (FPGAs) and Graphics Processing Units 

(GPUs). Starting with the graphic processing units, 

these units present a massively parallel architecture 

that consists of many processors.  They have 

dramatically evolved during the last decade and 

hence achieve more computational power than 

Central Processing Units (CPUs) [2]. This evolution 

makes them highly attractive hardware platforms for 

general purpose computation. For a better 

exploitation of this high power, the GPU’s memory 

bandwidth has also evolved significantly. Moreover, 

the advent of GPGPU (General Purpose GPU) 

languages makes it possible to exploit GPU for more 

types of application and not only for image rendering 

and video games. In this context, NVIDIA launched 

the API CUDA (Compute Unified Device 

Architecture) [3], a new programming approach 

which exploits the unified design of the most current 

graphics processing units from NVIDIA. Under 

CUDA, GPUs consist of many processor cores which 

can address GPU memories directly.  This fact 

permits a more flexible programming model than 

previous ones [4]. As a result CUDA has rapidly 

gained acceptance in domains where GPUs are used 

to execute different intensive parallel applications. 

FPGAs, on the other hand, are fine-grained recon- 

figural architectures that can virtually perform any 

processing operation at a hardware level, satisfying 

real-time requirements of image and video processing 

and off-loading these computing intensive tasks  from  

general microprocessors. However, the development 

time needed to create a working hardware 

implementation of an algorithm is longer  and less 

flexible than a software analogous implementation. 

To come up with competitive implementations of both 

the canny edge detector and the Harris corner detector 

algorithms that satisfy real-time requirements, we 

propose a new multi- resolution FPGA-based 

architecture that supports runtime parameterizations 

of its internal processing blocks We also propose an 

optimized GPU implementation of those algorithms 

in order to provide a comparison between these two 
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approaches, analyzing their advantages and 

drawbacks. With proper design constraints and 

application-to-architecture mapping, we show how 

FPGAs can be a suitable alternative to GPU- based 

image and video processing units, both in terms of 

flexibility and real-time performance. This is 

especially valid when portability, low-latency and 

power consumption are needed.  This paper is an 

updated extension of the work [5] in which only the 

FPGA implementation was addressed. Also, the 

present work Provides additional results obtained 

with up-to-date FPGA- and GPU- based platforms. 

The rest of this   paper is organized as follows: 

Section 2 presents the state-of-the-art and related 

works on feature detection algorithms, specifically 

edge and corner detection, and their implementations 

on reconfigurable platforms. Section 3 gives a brief 

overview of edge and corner detection and describes 

the algorithms explored in this work. The GPU and 

FPGA architectures and their implementations are 

presented in Sections 4 and 5, respectively. Section 6 

presents the analysis of results obtained with these 

architectures.  Finally, Section 7 gives the 

conclusions of this   work as well as the future 

work perspectives  

 

2. RELATED WORK STATE OF THE ART 

This section is divided into two parts. The first part is 

dedicated to the feature detection algorithms, more 

specifically edge and corner detection, some 

keywords, and the evaluation of several state of the 

art techniques, at the origin of the algorithms studied 

in this work.  The second part presents some 

important GPU implementations of feature 

detection algorithms followed by a description of 

FPGA-based architectures with the same objectives, 

analyzing their positive and negative aspects and 

comparing their achievements to our proposed 

architecture.   

 

2.1 Feature  Detection Algorithms  

Several techniques have been proposed for both 

edge and corner detection. Regarding edge detection 

algo- rithms, the works in [6] and [7] present a 

comparison of several classical edge detection 

techniques.  Results show that the canny edge 

detector, proposed in [8], has a better performance 

than the other detectors in different scenarios.  

Although the Canny approach is a well-known 

technique with a good response to noisy images and 

largely employed in recent applications as in [9] 

and [10], new techniques have been explored 

showing better performance.  One example is the 

global probability of boundary (gPb) proposed in 

[11]. Regarding corner detection algorithms, the work 

in [12] presents a comparison of classical techniques, 

and according to the results presented, the Harris 

corner detector, proposed by  [13],  has a better  

performance than other detectors. As in the case of 

Canny, the Harris technique is a well- known robust 

solution for tracking interesting points in a video 

stream.  A recent work in [14] presents the state-of-

the- art of interest point detectors 

describing new techniques with better performance 

than Harris, e.g., the Fast Hessian [15]. In this work, 

we chose to explore the widely-used Canny and 

Harris detection algorithms due to their reliable 

performance with noisy images.  

 

2.2 Processing Architectures and 

Implementations   

Most of feature detection algorithms include sections 

that consist of similar computation with pixels.  This 

fact means that these algorithms are appropriate for 

acceleration on GPU by exploiting its processing 

units in parallel. 

In this context, [16] implemented several classic 

image processing algorithms on GPU with CUDA 

[3]. The OpenVIDIA project [17] has implemented 

different com-puter vision algorithms running on 

graphic hardware such as single or multiple graphic 

processing units. In the medical imaging domain, 

there are some GPU works for new volumetric 

rendering algorithms [18] and Mag- netic Resonance 

(MR) image reconstruction [19]. There are also 

different works dealing with the exploitation of 

hybrid platforms of multicore processors and GPUs. 

OpenCL [20] proposed a framework for writing pro- 

grams which execute across hybrid platforms 

consisting of both CPUs and GPUs. The work of [21] 

presented a flexible programming model for 

multicore processors. In the same context, StarPU 

[22] provided a unified runtime system for 

heterogeneous multicore architectures permit-ting the 

development of effective scheduling strategies 

Regarding FPGAs, many recent works have 

presented feature detector implementations in order 

to meet real- time requirements as in [23], [24], [25], 

and [26]. All these implementations have a fixed or 

slightly configurable architecture, as in [26] which 

presents an improved canny edge detector with  a 

self-adaptable threshold mechanism. Most of the 

previously cited works are basically a cascaded set of 

neighborhood operators that must   be redesigned 
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and resynthesized for every different algorithm or 

frame resolution. This characteristic reduces the 

system flexibility since they do not permit parame 

terization at runtime.  Our  proposed   architecture 

reduces these limitations by using configurable 

neighborhood extractors, as explained in Section 5.2. 

In terms of processing performance, these 

Implementations are, in the best of cases equivalent 

to our architecture performance on a single pipeline 

configuration.  In [27] a distributed implementation 

of the canny algorithm is presented with a 

performance around 3.8 times faster than our 

implementation. To achieve this, the input image is 

split into 16 blocks and each block is handled by a 

particular processing core. This solution requires  

more  resources and a simultaneous  reading from 16 

distinct regions of an image, which  indicates that the 

input image must be pre-buffered. In order to 

minimize latency, our proposed architecture was 

designed to process a flow of pixels without a pre-

buffering stage. Minimal latency is important in 

applications that require a quick response from the 

system when any change in the input occurs, e.g., 

vehicle obstacle detection and military targeting 

systems. However, if the application permits a pre-

buffering stage, the main pipeline can be replicated to 

simultaneously work in different pixel flows, 

increasing the computing performance by a factor 

equal to the number of pipelines. In this case, we 

could achieve a computing performance similar to 

[27] implementation with less than 4 pipelines. In 

[28], two implementations of the same medical video 

processing application are presented, one on GPU 

and another on FPGA. It also presents an interesting 

discussion about GPU vs. FPGA implementation 

highlight -ing the fact that FPGA solutions can be 

more compact and consume less power, if compared 

to GPUs, at the cost of a high development time. 

Another comparison of FPGA and GPU, 

presented in [29], gives similar conclusions to [28],   

adding that FPGAs are not recommended for 

applications using datasets with a large fixed-point 

representation is not suitable. On the other hand, 

according to [29], GPUs are not suitable for 

applications that require very short latency responses. 

These conclusions agree with our proposal of low-

latency feature detection architecture. 

 

3. EDGE AND CORNER DETECTION 

Many computers vision applications use edge and 

corner detectors as primary operators before high 

level processing, such as object recognition and 

tracking. For instance, the information associated to 

the edges of an object in an image which is, in many 

cases, sufficient to identify the object. In this section, 

we will give an overview on these two components of 

vision systems, showing their foundation and 

describing the most common techniques of 

implementation. 

 

3.1 Edge Detection 

Edges are defined as an image position where a 

significant change in intensity values occurs [30]. 

Basically, if the brightness of a pixel has a significant 

difference from pixels in its neighborhood, it may 

contain an edge. In order to detect those changes, the 

local gradient approximation of image function I (u, 

v) is usually applied, which is the basis of many 

traditional operators of edge-detection. The gradient 

vector ∇I is composed of the first order partial 

derivatives (1) of function I alongside its coordinate 

axes (u, v). 

 

∇I(u,v)= δI (u,v) δu 

 

δI (u,v) δv 

The magnitude of ∇I is 

obtained 

from  (2) 

∇I(u,v)= δI (u,v)2 + δI   

(u,v)2 

 δv 

 δv 

Some operators are commonly used for 

approximating this gradient. Two examples of these 

are the Sobel and Prewitt operators. They use linear 

filters to obtain gradi- ents in each direction x and y. 

Equations (3) and (4) 

show the filter matrices Hx and Hy of these 

two operators          

  

 -1 0 1   -1 -2 -1   

S |    |  s |   |  

Hx = -2 0 2  and Hy=  0 0 0 (3) 

 -1 0 1     1 2 1  

p |    | p |   |   

Hx  =    -1 01  Hy = -1   -1   -1   

 -1 0  1   0  0 0  (4) 

 |    |  |   |   

 -1  0  -1   1  1 1   

Applying these filters to an input image for either a 

Sobel or a Prewitt operator results in two gradients 

Gx and Gy, as shown in equations (5) and (6). Notice 

that the function presents the convolution operator  
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Gx (u, v) = Hx ⊗ I (u, v)              (5)   

Gy (u, v) = Hy ⊗ I (u, v)              (6)  

  

With these gradients, it is possible to obtain a 

gradient magnitude that represents the local edge 

strength |G| (7)  

and  the  local edge  orientation angle Φ (8).  

((G(u,v))= (Gx (u, v)) ,(Gy (u, v))  (7)  

Φ(u, v) = tan
−1

  Gy (u, v)    (8)  

        

  Gx (u, v)    

More elaborate algorithms can be used in order to 

enhance edge location.  One of the most popular  of  

these  algorithms  is  the  Canny edge  detector due  to 

its  mini- mum  number of  false  edge points,  good 

localization of edges,  and  single  mark  on  each  

edge  [31]. 

Basically, the canny algorithm is composed of 

three steps: smoothing, edge enhancement, and 

localization. For the smoothing step, the canny 

algorithm uses a Gaussian low pass filter to suppress 

the noise of the input image.  Next, in  the edge  

enhancement stage, it  is  necessary  to  calculate a 

gradient vector at  each  pixel  of  the  smoothed 

image. For example  it is possible to calculate  the 

gradient vector, magnitude and  angle,  by either 

processing the Sobel or   Prewitt operator, or  simply  

computing the local first norder derivatives  along its 

coordinate axes by the approximations (9) and

 (10).   

Ix(u,v)= δI(u,v)~ 
f
 (u+1) - 

f
 (u-1)  (9)   

    δx     2         

Iy(u,v)= δI(u,v)~ 
f
 (v+1) - 

f
 (v-1)  (10)   

    δy     2         

It is also possible to combine the smoothing and edge 

enhancement step in one single Step by convolving 

the derivative of   a   Gaussian    kernel   the 

localization step is divided into two stages: non- 

maximum suppression and hysteresis thresholding.  

The objective of the non-maximum suppression is to 

eliminate non- ridge pixels giving a one pixel wide 

aspect at the edges. A ridge pixel is defined as a pixel 

with a gradient magnitude greater than that of the 

adjacent pixels in the gradient direction.  In   the 

hysteresis thresholding stage, two thresholds are used,  

Tlow  and Thigh . All pixels with a magnitude higher 

than  Thigh are considered true edges. Pixels with 

magnitude between Tlow and Thigh are considered as 

edge candidates. Pixels that do not satisfy these two 

criteriaare suppressed.  Edge candidates become true 

edges if they are connected to true edges directly or 

through other candidates.  The values of Tlow and 

Thigh depend on image characteristics, e.g., 

brightness and contrast, and have the same range of 

pixel intensity, e.g., 0 to 255 in 8-bit gray scale.  

Methodologies to determine the threshold values are 

out of this paper’s scope and will be treated as values 

specified by the user beforehand. For more 

information regarding these methodologies, we refer 

the readers to [1], [30], [31], and [32].   

 

3.2 Corner Detection  

A corner is defined as an area that exhibits a strong 

gradient value in multiple directions at the same time 

[31].  The Harris operator uses this premise to find 

corners in an image.  The first step is to obtain the 

first partial derivative of the image function I (u, v) in 

directions, horizontal and vertical, based on   the 

approximations (9) and (10). With the values of Ix 

and Iy , it is  possible  to  calculate the elements of the 

matrix M, described in (11), using (12), (13), and  

(14).       

M= A C  

 

 C B   (11)          

A=I
2
x ⊗ ω   (12)          

B=I
2
 y ⊗ ω  (13)          

C=(Ix Iy ) ⊗ ω (14)   

        

where ω is a smoothing circular  operator, e.g., a 

Gaussian filter.  The final step is to obtain the Harris 

operator response R as in (15).  

R = Det[M ] − k · Tr
2
 [M ]  (15)  

  

where R is positive in corner regions, negative in 

edge regions,  and is  very small in flat regions,  

and k is  a coefficient  that,  in practice, is a fixed 

value in the range of  0.04 to 0.06. This step can also 

be obtained by analyzing the eigenvalues of the 

matrix M. 

 

4.  GPU ARCHITECTURE AND 

IMPLEMENTATION 

Feature detection algorithms are   excellent 

candidates for acceleration on GPU since they consist 

mainly of common computation over   many pixels.  

This fact is due to the exploitation of the high number 

of GPU computing units in parallel.  Thus, we can 

say that graphic cards present an efficient tool for 

boosting the performance of image processing 

techniques.  This section is presented in two parts:  

The first describes our proposed development scheme 

for image   processing on GPU, based upon CUDA 
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for parallel constructs and OpenGL for visualization. 

The  second part is devoted to the presentation of 

the GPU implementation of edge and corner detection 

methods based on the canny and Harris techniques 

respectively.       

     

4.1 Proposed scheme for image processing on GPU 

We propose in this section a development scheme for 

image processing on GPU, making it possible to load, 

treat and display images on graphic cards. This 

scheme is based upon CUDA for parallel constructs 

and Open GL for visualization, which reduces data 

transfer between the device and host memories.  

It is based on three steps as illustrated in Fig. 1:  

1)  Input data loading:  This  step   loads  the  input 

data  (images) from  host (CPU) to device (GPU) 

memory which makes it possible to apply GPU 

treatments on the copied image   

2) CUDA parallel processing: This step has two main  

stages: Threads  allocation: Once  the input  data are 

loaded on  the  GPU  memory, the number of threads 

in the  GPU grid has  to be selected, so that each  

thread can perform its processing on one  or a group 

of pixels. This enables threads to treat pixels in 

parallel Note that the number of threads depends on 

the number of pixels in the input image. CUDA 

processing: The CUDA functions (kernels) are 

executed using the number of threads selected in the 

previous step.  

3) Output results: After processing, results can be 

presented using two  different scenarios:  

• Open GL visualization:  The graphic library 

OpenGL   is used   for displaying the output images 

quickly, since it exploits buffers that already exist on 

GPU. Indeed, this avoids more data transfer between 

host and device memories. This scenario is useful 

when parallel processing is applied on a single image 

only since we cannot display many images using one 

video output (one GPU disposes of one video output). 

Transfer of results: OpenGL visualization becomes 

impossible in the case of multiple images processing 

using one video output only. In this case, the transfer 

of output images from the GPU to the CPU memory 

is required. This transfer time presents an additional 

cost for the application for an optimized utilization of 

graphic processors; we propose to exploit the GPU’s 

texture and shared memories. Hence, we loaded the 

input image on the GPU’s texture memory for a fast 

access to pixels. We have also loaded each 

neighboring pixel onto the GPU’s shared memory for 

a faster processing of the image’s pixels using their 

neighbors’ values 

 

 

 

 

 

 

 

Figure 1: Image processing on GPU based upon 

CUDA and OpenGL. 

 

Based on the scheme described above, we propose 

the GPU implementation of edges and corners 

detection methods, enabling both efficient results in 

terms of the quality of detected edges and corners, 

and improved performance thanks to the exploitation 

of GPU’s computing units in parallel. 

 

4.2 Edge detection on GPUs 

This section describes the GPU implementation of 

the edge detection step based on a recursive 

algorithm using the Canny-Deriche design [33]. 

Noise truncate immunity and the reduced number of 

required operations make this method very efficient. 

This technique is based on four principle steps 

 

1) Recursive gradient computation (Gx,Gy).  

2) Gradient magnitude and direction 

computation.  

3) Non-maximum suppression.  

4) Hysteresis thresholding.  

 

Notice that the recursive gradient computation   step 

applies a Gaussian smoothing before filtering the 

image recursively using two Sobel filters in order to 

compute the gradients Gx and Gy.  Within the steps of 

gradient magnitude and direction computation, the 

non- maximum suppression and hysteresis occur thus 

representing the same steps used for the canny filter 

described in the previous section.    

The proposed GPU implementation of this recursive 

method is based on the parallelization of all 

computation steps on GPU. Below, we describe the 

implementation and the steps as presented in Fig. 2.  

 

Recursive Gaussian smoothing: The GPU 

implementation   of the recursive Gaussian smoothing 

Step   is developed using the CUDA Software 

Development Kit (SDK) individual sample package   

[34]. This parallel   implementation is applied on the 

Deriche recursive method [33]. The advantage of this 

method is that the execution time is independent of 

the filter width. The use of this technique for 
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smoothing permits a better noise truncate immunity. 

 

Sobel filtering: The recursive GPU implementation 

of this step is also provided from the CUDA SDK 

individual sample package [34]. This parallel 

implementation exploits both shared and texture 

memories which leads to a boosting of the 

performance.  

 

Gradient magnitude and direction computing: 

Once the horizontal and vertical gradients (Gx and Gy 

) have been computed, we calculate the gradient 

magnitude (intensity) using equation (7) and the 

gradient direction 

 

 
Figure 2:  GPU implementation of Canny-Deriche 

 

Edge detector  using equation  (8).  The CUDA 

implementation of  this  step  is  applied  in parallel 

on image  pixels,  using a  GPU grid computing  

containing  a  number  of  threads equal to   the   

number   of   pixels    in   the image.  For example,   

480,000 threads would be required for an 800×600 

image resolution. Thus, each thread calculates the 

gradient magnitude and direction of one pixel of the 

image. 

 

Non-maximum suppression: After computing the 

gradient magnitude and direction, we apply a CUDA 

function (kernel)  which enumerates the local 

maximum, which are pixels with high gradient 

intensity. We pro- pose to load the values of neighbor 

pixels  (left, right,  top, and  bottom)  in  shared  

memory  since  these values are  required  for the 

search  for  the local  maximum.  The number of 

selected threads for parallelizing this step was also 

equal to the number of pixels in the image. 

 

Hysteresis thresholding:  Hysteresis presents the 

final step of edge production. The GPU 

implementation of this step can be presented in 

two phases.  The first one consists of selecting threads 

with a number equal tothe number of   image pixels.  

Each thread checks   if its corresponding pixel has a 

gradient value greater than Thigh. This pixel will be 

marked as an edge point.  Then, for the second 

phase, each block of threads will treat one marked 

edge point and its eight neighbors (connected pixels).  

These pixels are loaded on the shared memory in 

order to have a fast access to  their values.  Each 

connected pixel will  be  marked as an  edge  point  if  

its gradient  intensity  is  greater  than   the  low 

threshold Tlow .    

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: GPU implementation of the Harris 

corner detector. 

 

4.3 Corner detection on GPUs 

We developed the GPU implementation of  

Bouguet’s corners  extraction  method   [35], based 

on   the  Harris  detector [13]. This\ method is proven 

to be efficient thanks to its invariance to rotation, 

scale, brightness, and noise.  Our GPU 

implementation of this method is based on 

parallelizing its five steps on GPU as shown in Fig. 3. 

   

Spatial derivatives  computation:  The  first step  

consist on  computing  the  matrix G  of spatial 

derivatives  for  each  pixel  using equation (16). ). 

This matrix  of 4 elements (2×2) is calculated with the 

spatial derivatives Ix  and Iy  which  are  computed 

using  the  equations(9) and  (10) respectively. 

     I
2
x  Ix Iy       

  G=        (16)    

     Ix Iy I
2
y        

The GPU implementation applies a parallel treatment 

of  pixels  using  a  GPU grid  which contains a 

number of  threads  equals  to  the  number of  pixels.  
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The values of neighbors’ pixels (left, right, top, and 

bottom) of each image point are loaded in the GPU 

shared memory since these values (neighbors) are 

required for computing the spatial derivatives.  Each 

thread computes the spatial derivatives of one pixel.  

Then, each thread can calculate the elements of the 

matrix G.   

   

Eigenvalues computation:  Based on the matrix G, 

we calculate the two eigenvalues of each pixel.  Then, 

we keep the highest eigenvalue for each pixel.  The 

GPU implementation of this step is performed by 

computing these eigenvalues in parallel over image 

pixels.  In this case, we have also used a GPU grid 

which contains a number of threads equals to the 

number of pixels.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Functional blocks of the proposed 

architecture 

 

Maximum eigenvalue selection:  Once the 

eigenvalues are calculated,  we extract the maximum 

value.  This value is computed on GPU using the 

library CUBLAS [36].  

 

Removing of small eigenvalues: The research of 

eigenvalues is performed such that each GPU   thread 

compares the eigenvalue of its corresponding pixel 

with the maximum eigenvalue. If this value is lower 

than 5% of the   maximum value, the pixel will be 

excluded.     

    

Selection of best values:  The last step enables, for 

each    image area, the extraction of the pixel   with 

the highest eigenvalue. For GPU implementation, we 

create a GPU thread for each group of 10×10 pixels. 

Each thread allows the detection of the maximum 

eigenvalue in a region using the CUBLAS library.  

The pixels with these extracted values represent the 

detected corners. For more details about this 

implementation, we refer the readers to [37] and [38]. 

 

5. FPGA ARCHITECTURE AND 

IMPLEMENTATION 

The proposed architecture processes a streamed 

image or sequence of images with variable 

resolutions. The frame resolution can be   detected  

directly  from  the  header of  images  files or  it  

can  be  manually configured  by  the user.  In both   

cases, this information adapts the whole 

architecture on-the-fly. Fig. 4 shows the functional 

blocks of the main architecture for both the Canny 

and Harris detectors.   The proposed Architecture can 

work as an accelerator for image processing where 

the Frame Source and Frame Sink are the interface 

between the host computing system and the 

architecture, e.g., PCIe or Gigabit Ethernet.  In a   

different operating mode,  it can  work as a stand- 

alone image processor placed   directly on a pixel 

stream, e.g., embedded in a camera system. 

This section is divided into four parts where the first     

two    parts are dedicated to the main components    

of the proposed architecture, the System Controller 

and the Neighborhood Extractor (NE).  The last two 

parts describe the computational blocks used to 

implement the Canny and Harris detectors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5:  Architecture of the   System Controller 

block 

 

5.1 System Controller    

The System Controller, shown in Fig.  5, is composed 

of two  main  blocks, the Header Register and the 

Data Counter. These blocks operate in two different 

modes ac- cording to the user  input signal header en. 

This signal indicates if the data input is a single 
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image (header en = 1) or an image sequence (header 

en =  0). If the data input is a single image the Header 

Register can extract image characteristics directly 

from the file’s header. 

The Width (W) and Height (H) characteristics are 

sent to the Processing Pipeline in order to configure 

the line registers, which are image width dependent.  

The Data Counter examines the current position of 

the stream in order to generate two signals are 

transferred to the output (Frame Sink) without 

traversing the Processing Pipeline. In the case of an 

image sequence, the Header Register and the Data 

Counter blocks are disabled and the user 

configuration is transferred di- rectly to the 

Processing Pipeline. The System Controller only 

supports non-compressed image and video  formats,  

more specifically, bitmap (BMP)  images  on single  

image processing mode and  regular progressive 

raster scanned video stream on image sequence 

mode. 

When the proposed architecture   is operating on 

single image mode, it   must process one image 

completely before starting to process a new one.   

This approach allows  it to  process  a sequence of 

images  with  different sizes  since  every  new image  

can  readjust  the  architecture parameters  without  

interfering  with  the previous  image processed.  

However,  if  all the  input  images   have  a known 

and  fixed size, the image  sequence mode  can  be 

used to  reduce idle  resources and  latency.  In this 

mode, the architecture processes all input images in a 

sequence, keeping the processing pipeline full all the 

time. 

 

5.2 Neighborhood Extractor 

The NE block provides a sliding window with a fixed 

dimension (w × h) to the subsequent processing block 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  A 3×3 sliding window where the 

valisscaning positions are the gray pixels in the 

input image.   

It  was designed  to   support  images  with variable 

resolution  and  automatically handle  the  image  

borders,  keeping  a reduced  memory  requirement  

and minimizing  the  latency.  In order to simplify the 

description of the NE operation, the smallest version 

in the proposed system, a 3×3 NE window, will be 

used as a reference. As an illustration, Fig. 6 presents 

3×3 NE window characteristics where the window 

scans the whole image following the image 

coordinates that go from (0, 0) at the origin to(W-

1,H-1) 

A characteristic problem that concerns 

neighborhood computations is the border problem 

illustrated in Fig. 6. It occurs because a 

neighborhood can only be processed if it fits wholly 

within the image, resulting in a smaller image. To 

solve this problem, we have added a padding 

mechanism that extends the image boundaries by 

repli- cating, or clamping, the pixels at the image 

limits. 

The basic structure of the NE is a set of 

cascaded line buffers connected to register arrays 

from where it is possible to read the current and two 

or more previously   stored pixels.  Fig.  7 shows the 

proposed 3×3 NE block architecture functional blocks 

and Fig. 8 presents the register array architecture. A 

secondary structure is responsible for processing the 

image borders.  This structure is based on the 

Coordinate Counter (Fig.  7)  Which Provides? The 

input coordinates to the mechanism selecting the 

output    according to the  window position. A 

variation of  the  NE  is used   in  the Canny 

detector’s hysteresis stage,  where  the  input  of  last  

line  buffer (line  buffer is connected  to    the  output  

of  the  connector  block (Fig. 10), allowing it to reuse 

its  own output as  part    of its Neighborhood input.  

This recursive behavior improves the  hysteresis’ 

performance in a one-pass image scan. 

The Line Buffer is shown in Fig. 9. Based on the 

image width and window position, the Line Buffer 

Controller generates the write and read addresses, 

WR ADD and RD ADD respectively, for a dual-port 

on-chip RAM block with a size of 4096 Bytes.  

This configuration has the advantage of supporting 

different image resolutions without requiring   are 

synthesis   process. 

Indeed, the System Controller (Fig. 5) can reprogram 

the Line Buffer Controller on the fly when  a  new 

image  with a  different resolution  arrives or it   can  

be   done manually by  the user.  The  maximum 

resolution supported  by the  NE isWm ×Hm pixels, 

where W is limited   by the on-chip RAMblock  size,  

4096 pixels  in  this  case,  and  H  depends on   the  
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size of a System  Controller internal   register, which 

is fixed to 12 bits, addressing   up  to 4096 pixels  

(2
12

 ).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The 3×3 NE architecture 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The register array architecture 

 

 

 

 

 

 

 

 

 

 

Figure 9: The line buffer architecture 

  

In terms of latency, the NE block   minimizes the 

required number of   buffered pixels.  Considering 

that the   window size is w × h,    the latency in pixels 

of the NE block can be calculated by (17).  

 w – 1 h - 1  

NElatency=   +W    

 

For  different  window  sizes,  the  NE  only differs  

in  the number of line  buffers,  the  size of  the  

register  array   and the  complexity  of  the  image  

border handler that  must include the  extra  elements 

in the  window.  

  

5.3 Canny      

Detector       

The Canny  detector  processing  pipeline follows  the  

original  Canny  algorithm  with some  modifications  

to  simplify mathematical  operations,  optimizing 

performance and  utilization of resources.  

Fig. 10 shows the functional diagram of the canny 

edge detector processing pipeline. Below, we 

describe all the steps along the pipeline 

 

Color  to  grayscale:  The  first  step  in the FPGA  

implementation  of  the  Canny  edge detector  is  a 

conversion from  24-bit  RGB color  standard  into  

gray scale  where each pixel n is n represented  by  8-

bit  samples carrying  the pixel’s  intensity.  This step 

is performed by the C2BW block which computes the 

average intensity of the three colors (red, green, and 

blue) in each input pixel. 

 

Gaussian smoothing: The smoothing stage is based 

on a Gaussian low-pass filter. The Gaussian filter 

requires a 5×5 pixels window provided by an NE 

block and is computed based on a fully parallelized 

linear filter operator defined in (18). This operator 

firstly multiplies all the elements of the input 

window by the corresponding kernel coefficients 

(Fig. 11). Then, these intermediate results are 

summed up in an adder tree.  Finally,  the total is 

divided by normalization factor.  

    

g(u, v) = f (u + i, v + j ) · h(i, j)         (18) 

Where g(u, v) is the  resulting image, f (u, v) is 

the  input image, and  h(i, j) is the  kernel.  

 

Sobel filtering:  The edge enhancement is made by 

processing the Sobel operators defined in (3). 

In  this   step,  a  single  3×3 NE  block  is necessary 

and  the  computation is similar  to the Gaussian 

filter,  based  on  linear  filtering. The two  Sobel  

kernels  work  in  parallel processing the gradients Gx  

and  Gy . 

 

Magnitude & Direction: The magnitude and 

direction equations, defined in (7) and (8), are quite 

expensive to implement on hardware. To avoid 

these complex computation tasks, we implemented 

the approximation solutions proposed in [7]. These 
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solutions are defined in (19) and (20). 

 

 

|G| ≈ |Gy | + |Gx | (19) 

 

 90
o
 |Gy|>|Gx| 

Φ≈ (20) 

 0
o
  |Gy|>|Gx| 

 

Non-maximum suppression: The Non-Maximum 

Suppression (NMS) step eliminates pixels with 

gradient magnitude smaller than adjacent pixels in the 

gradient direction. Fig. 12 shows the NMS hardware 

architecture. 

 

Hysteresis thresholding: The final step is the 

hysteresis thresholding where two different 

thresholds Thigh and Tlow are applied to the input 

image Thigh saturates every pixel with a gradient 

value greater than its threshold value. Tlow bypasses 

every pixel with a gradient value greater than its 

threshold value. The output of these two blocks are 

added up, resulting in a stream where the saturated 

pixels are considered part of the edges and the other 

pixels different than zero are considered edge 

candidates. Then, a sequence of operators test all 

pixels within the image to determine if edge 

candidates are connected to edge pixels for reducing 

the fragmentation of contours in the edge map. The 

connector blocks test if at least one of the eight  

neighborhood pixels of an edge candidate is a true 

edge.  If the test is positive, the edge candidate is 

marked as a true edge. To improve the efficiency of 

this test, the connector blocks 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Functional diagram of the canny edge 

detector processing pipeline where the latency is 

indicated on the top of each stage and W is the 

number of pixels per image line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Kernel coefficients of the Gaussian 

filter with the origin coordinates (i, j) at the 

central pixel. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Non-maximum suppression hardware 

architecture. 

Utilize recursive NEs, as described in Section 

5.2, and mirror blocks to invert the image scanning 

direction.  The mirror blocks allow edge candidates to 

be tested in both directions, right-to-left and left-to-

right.   Similarly  to the   NE   block, the mirror block 

was de- signed to support images with variable 

resolutions.  The architecture of  the mirror block,  

shown in Fig. 13, is similar to the line buffer 

architecture (Fig.9).  The main difference is that the

 mirror block has two RAM blocks. While one 

RAM block is storing the current input line, the other 

outputs the previous line in a last-in-first- out (LIFO) 

fashion.  When the line is finished, the RAM blocks 

change their roles and the process starts again.  The 

Mirror Controller generates all the controlling 

signals, including the read and writes addresses for 

both RAM blocks.  In terms of latency,   the Mirror 

block minimizes the number of pixels buffered before 

it starts sending its results.  The latency in pixels of 

the Mirror block is equivalent to one image line size 

(W).       
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Figure 13: Architecture of the mirror block 

 

5.4 Harris Detector  

The Harris corner detector processing pipeline, 

shown in Fig.  14, is based on the original Harris 

algorithm presented in Section 3.2. Below, we 

present the FPGA implementation of this algorithm, 

divided into five steps.  

 

Color to gray scale:  The first step of this 

implementation is identical to the one presented in 

the previous section for the Canny implementation.

  

Spatial derivative computation:  This  step 

computes the  first  derivatives  Ix (u, v)  and Iy (u,  v)  

of  the  input  image  f (u,  v)  by applying the  

approximations presented in (9) and  (10).  

   

Building  the  matrix  M: In  this  step,  the values   

A,  B, and   C ,  defined  in  (12),  (13), and  (14),  are  

computed  to build  the  matrix M,  defined  in  (11).  

Three sub-pipelines are applied in parallel to perform 

these computations.    

Each sub-pipeline is formed by a multiplier, a 5×5 

NE block, and a Gaussian filters.  

 

Harris response:  The Harris response operator 

computes   the values of   R, defined in (15).  To  

keep  the pixel  stream within an   8-bit   resolution  

without  losing weak corner values,  R is truncated at 

255. This approach can  create large  regions  around 

the  corner  spot  with  saturated  values, making  

difficult  the  following  NMS process. 

To solve this, a threshold block eliminates low R  

values  that  do  not   represent  corners followed by  

an  extra  Gaussian  filter  to  blur these  saturated  

regions,  producing    a maximum  spot  at  the  center 

of  these regions.     

 

 

    

Non-maximum suppression: The final step is to 

select 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Functional diagram of the Harris 

corner pixels is indicated on the top of each stage 

and detector processing pipeline where the latency 

in W is the number of pixels per image  line. 

 

6. RESULTS AND ANALYSIS      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15:  Simplified functional diagram of the 

proposed architecture evaluation system. 

 

The best values representing corners.  To do  NMS  

block  analyses a region  (window) and maximum 

value  as a detected corner  In  order  to  evaluate  the   

proposed   architecture we  have implemented  it  in  

the Altera  development  board  DE2-115  containing  

a  Cyclone  IV EP4CE115  FPGA  device along  with  

a digital  camera  daughter  board D5M.  The 

complete  system  works  as  A  stand-alone  480  

kpixel  digital  camera  where  the  proposed  

architecture  is  embedded,  working  on  image  

sequence mode.  

 Diagram  of  the   complete system  where  a 

Circular  buffer  is    placed  between  the this,  a 9×9  

and filter  (RAW  to  RGB  converter)  marks the  

architecture  (Canny/Harris  Proposed    detectors)  in 

order to  detach the frame rate  from  the  input 

frame  rate. 
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In terms of latency, we can define two types of 

latency, the Initial Latency (IL) and the 

Processing Latency (PL). The IL  is  defined 

here  as  the  amount  of  time  between when the  

first  pixel  arrives  at  the  input of  the system  and  

when  it    is  received   at  the system’s  output,  i.e.,  

it corresponds  to  the time  expended to  fill  the  

pipeline. The PL is defined here as the sum  of the IL 

and the time to process all the pixels  of an image. 

Since our proposed architecture works at the same

 pixel  rate  as the  input pixel  stream   and  

considering that the  input pixel  stream has a 

constant rate,  we can express  IL and  IP in terms  of 

pixels, as  shown  in  Fig.  10 and Fig. 14. Based 

on these       

TABLE 1: Canny edge detector timing 

performance 

 

Image  resolution  CPU  GPU    FPGA 
a
 

(W  × H ) (ms)  (ms)  (ms)  

512×512 30 2.11 1.10 

1024×102

4 101 6.08 4.37 

1476×168

0 267 13.90 

10.3

1 

3936×393

6 1497 59.94 

64.1

6 

 

\ 

 

A FPGA working at 242 MHz  (Fmax) definitions, 

we can write equations (21) and (22). 

TABLE 2:  Harris corner detector timing 

performance 

 

 

Image  

resolution 

CP

U GPU FPGA 

 (W  × H ) (ms) (ms) (ms) 

     

 512×512 20 2.32 1.15 

     

 1024×1024 60 4.49 4.56 

     

 1476×1680 171 13.1 10.75 

   6  

     

 3936×3936 

140

2 64.41 66.93 

     

     

 

P LCanny = W × H + (37 + 8W ) (21) 

P LHarris = W × H + (53 + 9W ) (22) 

 

Where W × H is the dimensions of the image and the 

expression within parentheses is the IL.  The 

processing time can be obtained by dividing PL by 

the pixel rate.  Timing performance comparisons 

between three different  platforms are shown in 

Table 1 for the canny edge detector and Table 2 for 

the Harris corner detection.  In order  to provide 

results from a more   up-to-date tech- nology  than  

the  60 nm  Cyclone  IV, we have  synthesized  both  

Canny  and  Harris detectors targeting  the  28  nm 

Arria  V  5AGXFB3 FPGA device, which is part of 

the latest midrange FPGA family from Altera. The 

other platforms utilized are: a CPU Intel Core2 Duo 

E6600, 2.4 GHz; and a GPU GeForce GTX 580, 1.54 

GHz. In this analysis, the frequency of the FPGA 

implementation is the maximum frequency (Fmax) 

obtained during synthesis using the tool Quartus II 

v12.1. Tables 1 and 2 show that the FPGA has an 

evident advantage over the CPU implementation. The 

FPGA speedup factor for the CPU implementation 

varies from 

 

TABLE 3:  Comparison of power and energy 

consumption for the canny edge detector 

implementations 

 

Image 

CP

U  

GP

U  FPGA 

resolution       

(WxH) (W) (J) (W) (J) (W) (mJ) 

       

Standoff 136 - 229 - 0.9 - 

512X512 141 4.2 231 0.5 1.5 1.6 

1024x102

4 147 14.8 244 1.5 1.5 6.4 

1476x168

0 149 39.8 248 3.4 1.5 15.0 

3936x393

6 153 229.0 251 15.0 1.5 93.6 
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23.1 to 27.2 with the canny algorithm, and from 13.2 

to 20.9 with the Harris algorithm. Regarding the GPU 

implementation, the FPGA presented an advantage 

on 512×512, 1024×1024, and    1476×1680.  For 

larger images however, the GPU has an   increasingly 

better performance in function of the image 

resolution, while the FPGA has a constant 

performance. This  advantage  of  the  GPU  in  terms 

of is  due  to  its  high  number  of CUDA cores (512 

in a GeForce GTX 580). Indeed, the use of high 

definition images enables more CUDA threads to be 

launched so that each one can treat one or a group of 

pixels,  which offers a massively parallel processing.  

Moreover, the treatment of large images    enables the 

use    of  GPU  to  be increased  at  the  expenses  of  

data transfers between CPU  and  GPU  

memories.  An efficient exploitation of GPU requires 

the application of a highly intensive processing (in 

parallel) of large datasets (im- ages). The treatment of 

low resolution images on GPU is hampered by the 

cost of data transfers between CPU and GPU 

memories. These costs can be neglected when 

processing high definition images since   the 

treatment will be accelerated by launching many   

CUDA threads in parallel.  

In addition to its competitive performance, the FPGA 

implementation can still offer portability and much 

lower power consumption when compared to GPUs 

and CPUs, as we can see in Tables 3 and 4. Although 

both FPGA implementations perform the same 

computations as the concurrent architectures, the 

FPGA solutions consume  from  94  to  151  times  

less  power than  the CPU implementation and  

from 154  to  254  times  less power than  the  GPU 

implementation. In terms of energy efficiency, the 

figures are even    better compared with competitive 

architectures.  The  FPGA implementations are from  

1316 to 2652 times more  efficient  than  the  CPU  

solution  and from  161  to  315  times   more  

efficient than the  GPU  solution.  It  is  also 

important  to highlight  here  that  the  GPU,  despite  

being more  power  consuming than  the  CPU,  it  is 

more  energy efficient  than  the CPU due  to its 

higher performance.  Regarding resource utilization, 

the  FPGA Canny de- tector version occupies only 3 

% of the Arria V 5AGXFB3 resources and the Harris 

detector occupies 7 %, as de- scribed in Table 5 The 

proposed Canny and Harris detectors were also 

 

 

 

 

TABLE 4: Comparison of power and energy 

consumption for the Harris corner detector 

implementations 

 

Image 

CP

U  GPU  FPGA 

resolution       

(WxH) (W) (J) (W) (J) (W) (mJ) 

       

Standoff 136 - 229 - 1.1 - 

512X512 141 2.8 231 0.5 1.5 1.7 

1024x1024 147 8.8 240 1.1 1.5 6.7 

1476x1680 147 25.1 242 3.2 1.5 15.8 

3936x3936 152 213.1 249 16.0 1.5 98.2 

       

 

TABLE 5: FPGA resources utilization in the 

Canny edge detector and Harris corner detector 

implementations. The numbers within parentheses 

correspond to the percentage of use in the Arria V 

5AGXFB3. 

 

Memory Algorithm ALM
a
   Register (kb) DSP 

Blocks Canny  ED 3406 (2)  6608 

 533 (3) 28 (3) Harris CD 8624 (6) 

 17137  863 (5)  76 (7) 

     

 Adaptive Logic Modules.  Evaluated  in terms of 

efficiency and noise tolerance. In these tests, different 

levels of Gaussian noise were added to the original   

image.  Fig 1shows the proposed canny edge detector 

results in an image degraded by Gaussian noise.  In 

this figure, the images of   the edges were inverted for 

better visualization.     

Thgraph  in Fig 17 compares  our results  and  the 

results  of  a Canny  detector  provided  as  a plugin  of 

the  ImageJ  tool  [39],  called Feature J  [40].  These 

results show that   the  proposed canny detector has a 

similar response to the analogous implementation in 

software, demonstrating the efficiency of the 

architecture despite the algorithmic simplifications.  

Results  also  show that our   system can  eliably  

detect   edges   in  noise degraded  images  down  to  

20  dB  of  SNR, where many  false edges start  

appearing.  

The same idea of comparing SNR degraded image  

resolutions was used to test the Harris corner detector. 

Instead of computing the SNR of the output image 

with corner detection, the number of corners detected 

was analyzed and compared to the number of corners 

detected in the original image.  Fig. 18 shows the 
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Harris corner detector results on an image degraded 

by additive Gaussian noise.  The graph in Fig. 19 

shows the relation between the   number of corners 

detected and the image degradation level.  We can see 

that Corner detector has a reasonable number of 

corners detected in images de- graded down to 30 dB 

SNR. After this point, the number of false positive 

corners increases significantly. 

 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a new flexible 

architecture for Canny and Harris feature detectors. 

This new 
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                (c)                                     (d) 

Figure 16: Canny edge detector results in an 

image de- graded by Gaussian noise. (a) Original 

image; (b) edges detected in (a); (c) noise-

degraded image (SNR = 20 dB); (d) edges detected 

in (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17:  Edge detection degradation levels vs. 

Input image degradation levels. 

Architecture has   a   reduced   latency and memory 

requirement supporting images with variable 

resolutions.  The key component  in  this  architecture  

is  the  NE that  can be  parameterized on-the-fly  

based on  the  image  characteristics.  Some 

simplifications in the algorithms that reduce 

mathematical complexity, latency, and Memory 

requirements are also presented in this paper. 

The proposed architecture was evaluated on an 

FPGA- based platform and the results have shown the 

efficiency of the NE block and the algorithm 

simplifications that 

 

 

 

 

 

 

               

 

 

(a)        (b) 

 

 

 

 

    

 

 

 

                    (c)     (d) 

 

Figure 18: Harris corner detector results on an 

image de- graded by Gaussian noise.(a) original 

image(detail); (b) corners detected in (a); (c) 

noise-degraded image (SNR = 30 dB); (d) corners 

detected in (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19:  Number of corners detected vs. 

Image degradation levels. 
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Did not significantly change the algorithm’s 

reliability.  The results have also shown that the 

proposed architecture presented a very competitive 

performance com- pared with the analogous 

implementation in a GPU. The FPGA implementation 

can deliver a maximum through put of 242 Mpixel/s 

and 232 Mpixel/s in the Canny and Harris detectors 

implementation, respectively. This performance is 

sufficient to support high definition (HD) formats, 

including Full HD streams in a 1080p60 format 

(resolution of 1920×1080 pixels at a rate of 60 

progressive frames per second). Furthermore, it has a 

clear advantage in applications where low power 

consumption, low latency, and portability are 

required. 

Future work will be devoted to increasing the 

flexibility level of the architecture including a 

reconfigurable interconnection between the building 

blocks in such a way that several different processing 

pipelines can be created at runtime.  In  this  way,  a 

single  architecture  can  be  used  for  a  wide range  

of  image  and  video  processing algorithms. An 

extension of this  work  will be the  design of  a  

mapping  method  to  try  to reduce  the  application 

development  time. Another extension will  be the 

addition of a histogram analysis module to 

automatically adjust  threshold  levels  and/or  input 

image equalization Histogram  analysis demands  at 

least one  pre-scan on the  input image  which could  

significantly  increase  the  latency   of  the  system.  

However, considering  that  in video  processing the 

input context  will  not drastically change  between  

two  consecutive frames,  it  is  possible to  use  the  

histogram analysis  of  one  frame  to  adjust  the 

architecture for the  next  frame, without 

increasing the latency.    
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