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Abstract: FI Hadoop uses parallel mining algorithms on the basis of I/O overhead, data distribution, storage, 

scalability, load balancing, automatic parallelization and fault tolerance. On the basis of comparisons done, we get 

the most efficient parallel frequent itemsets mining algorithm i.e. FiDoop using FIUT and Map  Reduce 

programming model. Compared to related work, FIUT has four main metrics. First, it minimizes I/O overhead by 

scanning the database twice. The second metrics is FIU-tree an improved way to partition a database, which results 

from clustering transactions, and significantly reduces the search space. Third metrics is  only frequent items in each 

transaction are inserted as nodes into the FIU-tree for compressed storage. The last metrics is all frequent itemsets 

are generated by checking the leaves of each FIU-tree, without traversing the tree recursively, which significantly 

reduces computing time. 
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1.    INTRODUCTION 

1.1 data mining 

Data as an abstract concept can be viewed as the 

minimum level of abstraction, from that information 

and then knowledge are derived. Raw data are 

unprocessed data, refers to a collection of numbers, 

characters and is a relative term; data processing 

usually happens by stages, and the "processed data" 

from one stage may be considered the "raw data" of the 

next. Field data refers to raw data that is collected in an 

uncontrolled in suitable environment. 

                                                                                                     

1.2  Frequent itemsets frequent  

This proposed algorithm is used to dynamically create 

an optimal schedule to finish the submitted jobs in a 

High Performance Computing environment showing 

promising results which achieves significantly lower 

resource usage costs for the jobs. The resource 

management techniques include cost-aware resource 

provisioning, VM aware scheduling and online virtual 

machine reconfiguration. 

 

2.    DATA ANONYMIZATION 

Privacy is one of the most concerned issues in data 

publishing. Personal data like electronic health records  

and financial transaction records  are extremely sensitive 

although that can be analyzed and mined by 

organization. Data privacy issues need to be addressed 

urgently before data sets are shared. Data 

anonymization refers to as hiding sensitive data for 

owners of data records. Large scale data sets are 

generalized using two phase top-down specialization 

for data anonymization. 

 

1 k-Anonymity 

The k-anonymity is to shield a dataset against re-

identification by simplifying the attributes that might be 

utilized in a linkage attack (quasi identifiers). An 

information set is taken into account k-anonymous if 

each information item not differentiated from a 

minimum of k-1 alternative data things. 

 

l-Diversity 

l-diversity could be a variety of cluster based generally 

anonymization that's wont to preserve privacy in 

knowledge sets by minimizing the coarseness of a 

knowledge representation. This reduction may be a 

tradeoff that ends up in few loss of efficiency of 

knowledge management or mining algorithms so as to 

achieve some privacy. The l-diversity model is 

associate degree extension of the k-anonymity model 

that minimizes the roughness of information illustration 
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victimization techniques with generalization and 

suppression specified any given record maps onto a 

minimum of k alternative records within the data. 

 

t-closeness 

t-closeness could be an additional refinement of l-

diversity cluster based mostly anonymization that's 

accustomed preserve privacy in knowledge sets by 

reducing the coarseness of an information 

representation. t-closeness could be an extra refinement 

of l-diversity cluster primarily based anonymization 

that's wont to preserve privacy in knowledge sets by 

reducing the coarseness of an information illustration 

 

3. TREE PARTITION BASED PARALLEL 

FREQUENT ITEMSETS MINING ON SHARED 

MEMORY SYSTEMS 

The main idea is to build only one FP-Tree in the 

memory, partition it into many independent parts and 

transfer them to various threads. A heuristic algorithm 

is devised to balance the workload. Our algorithm can 

not only alleviate the impact of locks during the tree-

building stage, but o avoid the overhead that do great 

harm to the mining stage. We present the experiments 

on different kinds of datasets and compare the results 

with other parallel approaches. This approach results is 

great advantage in efficiency is achieved, especially on 

certain kinds of datasets. As the number of processors 

increases, our parallel algorithm shows good scalability. 

Association rule mining searches for interesting 

relationships among items in a given data set. One of 

the most famous examples of association rule mining is 

the market basket problem. 

However, as for extremely large datasets, the currently 

proposed frequent pattern mining algorithms still 

consume too much time.  

 One solution is to design more efficient mining 

algorithms to reduce the repeated I/O scans as 

well as to minimize the memory requirement 

and calculating time. So algorithms like kDCI , 

FPGrowth , etc, are proposed 

 Another alternative solution is to parallelize 

the algorithm. The present frequent pattern 

mining algorithms can be divided into two 

categories: apriori-like algorithms, which are 

the implementations of the classical apriori 

algorithm, and the other ones, which are 

completely different in structure with the 

classical apriori algorithm.                         

Among both kinds of algorithms, FP-Growth 

can achieve good efficiency. It’s faster than 

any of the apriori-like algorithms and it only 

has to scan the whole database twice. 

 FP-Growth algorithm is based on tree structures. 

The algorithm can be divided into two steps. 

 Building FP-Tree Algorithm  

 FP-tree construction 

 Input: A transaction database DB and a minimum 

support threshold ξ. 

 Output: FP-tree, the frequent-pattern tree of DB. 

 Method: The FP-tree is derived steps are given below.  

One time transaction database DB is scan. Collect F 

which is the set of all frequent itemsets, and the support 

of each frequent item. Sort F in support-descending 

order as F-List, the list of frequent items 

Create the root of an FP-tree, T , and label it as ―null‖ 

for each transaction Trans in DB, do the following 

FiDoop 

In light of the MapReduce programming model, we 

design a parallel frequent itemsets mining algorithm 

called FiDoop. The design goal of FiDoop is to build a 

mechanism that enables automatic parallelization, data 

distribution and load balancing for parallel mining of 

frequent itemsets on large clusters. To facilitate the 

presentation of FiDoop, we summarize the notation 

used throughout this paper in Table I. Aiming to 

improve data storage efficiency and to avert building 

conditional pattern bases, FiDoop incorporates the 

concept of FIU-tree . 

 

4.   METHODOLOGY 

 First MapReduce Job  

The first MapReduce job is responsible for creating all 

frequent one-itemsets. A transaction database is 

partitioned into multiple input files stored by the HDFS 

over data nodes of a Hadoop cluster. Each mapper 

sequentially reads each transaction from its local input 

split, where each transaction is stored in the format of 

pair. Then, mappers compute the frequencies of items 

and generate local one-itemsets.  

 Second MapReduce Job: Given frequent one-

itemsets generated by the first MapReduce job, 

the second subsequent MapReduce job applies 

a second round of scanning on the database to 

prune infrequent items from each transaction 

record. The second job marks an itemset as a 
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k-itemset if it contains k frequent items (2 ≤ k 

≤ M, where M is the maximal value of k in the 

pruned transactions).  

 Third MapReduce Job: The third MapReduce 

job—a computationally expensive phase—is 

dedicated to: 1) decomposing itemsets; 2) 

constructing k-FIU trees; 3) mining frequent 

itemsets. The main goal of each mapper is 

twofold: 1) To decompose each k-itemset 

obtained by the second MapReduce job into a 

list of small-sized sets, where the number of 

each set is anywhere between 2 to k − 1 and 2) 

2) to construct an FIU-tree by merging local 

decomposition results with the same length. 

Algorithm 3: Mining k-itemsets: Mine All Frequent 

Itemsets 

Input: Pair(k, k-itemset+support);//This is the output of 

the second MapReduce. 

Output: frequent k-itemsets; 

 function MAP(key k, values k-

itemset+support) 

 De-itemset ← values.k-itemset; 

 decompose(De-itemset,2,mapresult); /* To 

decompose each De-itemset into t-itemsets (t 

is f from 2 to De-itemset.length), and store the 

results to mapresult. */ 

 for all (mapresult with different item length) 

do 

 //t-itemset is the results decomposed by k-I t e 

m  itemset(i.e. t ≤ k); 

 for all ( t-itemset ) do 

 t − FIU − tree ← t-FIU-tree generation(local- 

F I FIU-tree, t-itemset); 

 output(t, t-FIU-tree); 

 end for 

 end for 

 end function 

 function REDUCE(key t, values t-FIU-tree) 

 for all (t-FIU-tree) do 

 t − FIU − tree ← combining all t-FIU-tree 

from each mapper; 

 for all (each leaf with item name v in t-FIU- 

tree) do 

 if ( count(v)/| DB |≥ minsupport ) then 

 frequent h − itemset ← pathitem(v); 

 end if 

 end for 

 end for 

 output( h, frequent h-itemset); 

 end function 

5.    ADVANTAGES 

5.1 Processing time 

Processing time is defined as the time it takes to 

complete a prescribed procedure.  

This graph shows the processing time. When compared 

to the existing method, there is less processing time in 

the proposed method.  

 
TIME COMPARE CHART 

No. of Items FT (ms) FD (ms) 

25 55200 51379 

50 104083 102758 

75 159122 154107 

100 184526 179826 

 

5.2 Memory consumption 

Memory consumption is defined as the amount of 

memory consumed to execute the dataset. 

Memory consumption 
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This graph shows the memory allocation. Memory 

consumption is defined as the amount of memory 

consumed. When compared to the proposed method, 

more memory is allocated for the existing method. 

 

MEMORY COMPARE CHART 

No. of Items FT (MB) FD (MB) 

25 550 498 

50 1200 1115 

75 2000 1900 

100 2800 2500 

 

6.    CONCLUS ION 

To solve the scalability and load balancing challenges 

in the existing parallel mining algorithms for frequent 

itemsets, we applied the MapReduce programming 

model to develop a parallel frequent itemsets mining 

algorithm called FiDoop. FiDoop incorporates the 

frequent items ultrametric tree or FIU-tree rather than 

conventional FP trees, thereby achieving compressed 

storage and avoiding the necessity to build conditional 

pattern bases. FiDoop seamlessly integrates three 

MapReduce jobs to accomplish parallel mining of 

frequent itemsets. The third MapReduce job plays an 

important role in parallel mining; its mappers 

independently decompose itemsets whereas its reducers 

construct small ultrametric trees to be separately mined. 

We improve the performance of FiDoop by balancing 

I/O load across data nodes of a cluster.The FIU tree 

achieves compressed storage. FiDoop runs three 

MapReduce jobs. The third MapReduce job is 

important. In third job the mapper independently 

decomposes itemsets and reducer built the ultrametric 

trees. 
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