
ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 94 Vol 3 Issue 11 Nov 2016/103

PARALLEL MINING OF FREQUENT ITEMSETS USING MAP REDUCE AND

FIDOOP

1
J. Sree Subhashini,

2
V. Bakyalakshmi

1,2
Sri Jayendra Saraswathy Maha Vidyalaya, College of Arts and Science, Coimbatore, India

1
subhachandran91@gmail.com,

2
vbakyalakshmi@yahoo.co.in

Abstract: FI Hadoop uses parallel mining algorithms on the basis of I/O overhead, data distribution, storage,

scalability, load balancing, automatic parallelization and fault tolerance. On the basis of comparisons done, we get

the most efficient parallel frequent itemsets mining algorithm i.e. FiDoop using FIUT and Map Reduce

programming model. Compared to related work, FIUT has four main metrics. First, it minimizes I/O overhead by

scanning the database twice. The second metrics is FIU-tree an improved way to partition a database, which results

from clustering transactions, and significantly reduces the search space. Third metrics is only frequent items in each

transaction are inserted as nodes into the FIU-tree for compressed storage. The last metrics is all frequent itemsets

are generated by checking the leaves of each FIU-tree, without traversing the tree recursively, which significantly

reduces computing time.

Keywords: Load mining, Automatic parallelization, Scalability, Clustering, Frequent itemsets, Tree recursively,

computing time.

1. INTRODUCTION

1.1 data mining

Data as an abstract concept can be viewed as the

minimum level of abstraction, from that information

and then knowledge are derived. Raw data are

unprocessed data, refers to a collection of numbers,

characters and is a relative term; data processing

usually happens by stages, and the "processed data"

from one stage may be considered the "raw data" of the

next. Field data refers to raw data that is collected in an

uncontrolled in suitable environment.

1.2 Frequent itemsets frequent

This proposed algorithm is used to dynamically create

an optimal schedule to finish the submitted jobs in a

High Performance Computing environment showing

promising results which achieves significantly lower

resource usage costs for the jobs. The resource

management techniques include cost-aware resource

provisioning, VM aware scheduling and online virtual

machine reconfiguration.

2. DATA ANONYMIZATION

Privacy is one of the most concerned issues in data

publishing. Personal data like electronic health records

and financial transaction records are extremely sensitive

although that can be analyzed and mined by

organization. Data privacy issues need to be addressed

urgently before data sets are shared. Data

anonymization refers to as hiding sensitive data for

owners of data records. Large scale data sets are

generalized using two phase top-down specialization

for data anonymization.

1 k-Anonymity

The k-anonymity is to shield a dataset against re-

identification by simplifying the attributes that might be

utilized in a linkage attack (quasi identifiers). An

information set is taken into account k-anonymous if

each information item not differentiated from a

minimum of k-1 alternative data things.

l-Diversity

l-diversity could be a variety of cluster based generally

anonymization that's wont to preserve privacy in

knowledge sets by minimizing the coarseness of a

knowledge representation. This reduction may be a

tradeoff that ends up in few loss of efficiency of

knowledge management or mining algorithms so as to

achieve some privacy. The l-diversity model is

associate degree extension of the k-anonymity model

that minimizes the roughness of information illustration

mailto:subhachandran91@gmail.com
mailto:vbakyalakshmi@yahoo.co.in

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 95 Vol 3 Issue 11 Nov 2016/103

victimization techniques with generalization and

suppression specified any given record maps onto a

minimum of k alternative records within the data.

t-closeness

t-closeness could be an additional refinement of l-

diversity cluster based mostly anonymization that's

accustomed preserve privacy in knowledge sets by

reducing the coarseness of an information

representation. t-closeness could be an extra refinement

of l-diversity cluster primarily based anonymization

that's wont to preserve privacy in knowledge sets by

reducing the coarseness of an information illustration

3. TREE PARTITION BASED PARALLEL

FREQUENT ITEMSETS MINING ON SHARED

MEMORY SYSTEMS

The main idea is to build only one FP-Tree in the

memory, partition it into many independent parts and

transfer them to various threads. A heuristic algorithm

is devised to balance the workload. Our algorithm can

not only alleviate the impact of locks during the tree-

building stage, but o avoid the overhead that do great

harm to the mining stage. We present the experiments

on different kinds of datasets and compare the results

with other parallel approaches. This approach results is

great advantage in efficiency is achieved, especially on

certain kinds of datasets. As the number of processors

increases, our parallel algorithm shows good scalability.

Association rule mining searches for interesting

relationships among items in a given data set. One of

the most famous examples of association rule mining is

the market basket problem.

However, as for extremely large datasets, the currently

proposed frequent pattern mining algorithms still

consume too much time.

 One solution is to design more efficient mining

algorithms to reduce the repeated I/O scans as

well as to minimize the memory requirement

and calculating time. So algorithms like kDCI ,

FPGrowth , etc, are proposed

 Another alternative solution is to parallelize

the algorithm. The present frequent pattern

mining algorithms can be divided into two

categories: apriori-like algorithms, which are

the implementations of the classical apriori

algorithm, and the other ones, which are

completely different in structure with the

classical apriori algorithm.

Among both kinds of algorithms, FP-Growth

can achieve good efficiency. It’s faster than

any of the apriori-like algorithms and it only

has to scan the whole database twice.

 FP-Growth algorithm is based on tree structures.

The algorithm can be divided into two steps.

 Building FP-Tree Algorithm

 FP-tree construction

 Input: A transaction database DB and a minimum

support threshold ξ.

 Output: FP-tree, the frequent-pattern tree of DB.

 Method: The FP-tree is derived steps are given below.

One time transaction database DB is scan. Collect F

which is the set of all frequent itemsets, and the support

of each frequent item. Sort F in support-descending

order as F-List, the list of frequent items

Create the root of an FP-tree, T , and label it as ―null‖

for each transaction Trans in DB, do the following

FiDoop

In light of the MapReduce programming model, we

design a parallel frequent itemsets mining algorithm

called FiDoop. The design goal of FiDoop is to build a

mechanism that enables automatic parallelization, data

distribution and load balancing for parallel mining of

frequent itemsets on large clusters. To facilitate the

presentation of FiDoop, we summarize the notation

used throughout this paper in Table I. Aiming to

improve data storage efficiency and to avert building

conditional pattern bases, FiDoop incorporates the

concept of FIU-tree .

4. METHODOLOGY

 First MapReduce Job

The first MapReduce job is responsible for creating all

frequent one-itemsets. A transaction database is

partitioned into multiple input files stored by the HDFS

over data nodes of a Hadoop cluster. Each mapper

sequentially reads each transaction from its local input

split, where each transaction is stored in the format of

pair. Then, mappers compute the frequencies of items

and generate local one-itemsets.

 Second MapReduce Job: Given frequent one-

itemsets generated by the first MapReduce job,

the second subsequent MapReduce job applies

a second round of scanning on the database to

prune infrequent items from each transaction

record. The second job marks an itemset as a

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 96 Vol 3 Issue 11 Nov 2016/103

k-itemset if it contains k frequent items (2 ≤ k

≤ M, where M is the maximal value of k in the

pruned transactions).

 Third MapReduce Job: The third MapReduce

job—a computationally expensive phase—is

dedicated to: 1) decomposing itemsets; 2)

constructing k-FIU trees; 3) mining frequent

itemsets. The main goal of each mapper is

twofold: 1) To decompose each k-itemset

obtained by the second MapReduce job into a

list of small-sized sets, where the number of

each set is anywhere between 2 to k − 1 and 2)

2) to construct an FIU-tree by merging local

decomposition results with the same length.

Algorithm 3: Mining k-itemsets: Mine All Frequent

Itemsets

Input: Pair(k, k-itemset+support);//This is the output of

the second MapReduce.

Output: frequent k-itemsets;

 function MAP(key k, values k-

itemset+support)

 De-itemset ← values.k-itemset;

 decompose(De-itemset,2,mapresult); /* To

decompose each De-itemset into t-itemsets (t

is f from 2 to De-itemset.length), and store the

results to mapresult. */

 for all (mapresult with different item length)

do

 //t-itemset is the results decomposed by k-I t e

m itemset(i.e. t ≤ k);

 for all (t-itemset) do

 t − FIU − tree ← t-FIU-tree generation(local-

F I FIU-tree, t-itemset);

 output(t, t-FIU-tree);

 end for

 end for

 end function

 function REDUCE(key t, values t-FIU-tree)

 for all (t-FIU-tree) do

 t − FIU − tree ← combining all t-FIU-tree

from each mapper;

 for all (each leaf with item name v in t-FIU-

tree) do

 if (count(v)/| DB |≥ minsupport) then

 frequent h − itemset ← pathitem(v);

 end if

 end for

 end for

 output(h, frequent h-itemset);

 end function

5. ADVANTAGES

5.1 Processing time

Processing time is defined as the time it takes to

complete a prescribed procedure.

This graph shows the processing time. When compared

to the existing method, there is less processing time in

the proposed method.

TIME COMPARE CHART

No. of Items FT (ms) FD (ms)

25 55200 51379

50 104083 102758

75 159122 154107

100 184526 179826

5.2 Memory consumption

Memory consumption is defined as the amount of

memory consumed to execute the dataset.

Memory consumption

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

25 50 75 100

Processing Time (ms)

FT (ms) FD (ms)

ISSN: 2347-971X (online) International Journal of Innovations in Scientific and
ISSN: 2347-9728(print) Engineering Research (IJISER)

www.ijiser.com 97 Vol 3 Issue 11 Nov 2016/103

This graph shows the memory allocation. Memory

consumption is defined as the amount of memory

consumed. When compared to the proposed method,

more memory is allocated for the existing method.

MEMORY COMPARE CHART

No. of Items FT (MB) FD (MB)

25 550 498

50 1200 1115

75 2000 1900

100 2800 2500

6. CONCLUS ION

To solve the scalability and load balancing challenges

in the existing parallel mining algorithms for frequent

itemsets, we applied the MapReduce programming

model to develop a parallel frequent itemsets mining

algorithm called FiDoop. FiDoop incorporates the

frequent items ultrametric tree or FIU-tree rather than

conventional FP trees, thereby achieving compressed

storage and avoiding the necessity to build conditional

pattern bases. FiDoop seamlessly integrates three

MapReduce jobs to accomplish parallel mining of

frequent itemsets. The third MapReduce job plays an

important role in parallel mining; its mappers

independently decompose itemsets whereas its reducers

construct small ultrametric trees to be separately mined.

We improve the performance of FiDoop by balancing

I/O load across data nodes of a cluster.The FIU tree

achieves compressed storage. FiDoop runs three

MapReduce jobs. The third MapReduce job is

important. In third job the mapper independently

decomposes itemsets and reducer built the ultrametric

trees.

REFERENCES

[1] Dean J. and Ghemawat S. (2008), ―Mapreduce:

Simplified Data Processing on Large Clusters,‖ Comm.

ACM, vol. 51, no. 1, pp. 107-113, 2008.

[2] Fung B.C.M., Wang K., Chen R., and Yu P.S. (2010),

―Privacy-Preserving Data Publishing: A Survey of

Recent Developments,‖ ACM Computing Surveys, vol.

42, no. 4, pp. 1-53.

[3] Fung B.C.M., Wang K., Chen R., and Yu P.S. (2007),

―Anonymizing Classification Data for Privacy

Preservation,‖ IEEE Trans. Knowledge and Data Eng.,

vol. 19, no. 5, pp. 711-725, May.

[4] Machanavajjhala, Gehrke J., and Kifer D. (2006),

―LDiversity: Privacy beyond K- Anonymity‖ , in

Proc. of the IEEE ICDE, pp. 24.

[5] Sweeney L. (2002), ―k-Anonymity: A Model for

Protecting Privacy,‖ Int’l J. Uncertainty, Fuzziness and

Knowledge-Based Systems, vol. 10, no. 5, pp. 557-570.

[6] Xiao X. and Tao Y. (2006), ―Anatomy: Simple and

Effective Privacy Preservation,‖ Proc. 32nd Int’l Conf.

Very Large Data Bases (VLDB ’06), pp. 139-150.

[7] Xiao X and Tao Y. (2006), ―Personalized Privacy

Preservation,‖ Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’06), pp. 229-240.

[8] Apache (2013), ―Hadoop, ‖ http://hadoop.apache.org.

[9] Microsoft Health Vault (2013),

http://www.microsoft.com/health/ww/products/Pages/

healthvault.aspx

0
400
800

1200
1600
2000
2400
2800

25 50 75 100

Memory Consumption(MB)

FT (MB) FD (MB)

